
Xiangdong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3726024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering DAST Nanoscale-Thick Films for Giant and Isotropic Second Harmonic Generation: Implications for Bioimaging and Quantum Optics. ACS Applied Nano Materials, 2022, 5, 3480-3490.	5.0	2
2	Porous and nanowire-structured NiO/AgNWs composite electrodes for significantly-enhanced supercapacitive and electrochromic performances. Nanotechnology, 2021, 32, 275405.	2.6	8
3	Longâ€Termâ€Stable Strong Second Harmonic Generation in Flexible DASTâ^PVDF Composite Films Realized by the Interface Interactions. Advanced Materials Interfaces, 2021, 8, 2100485.	3.7	5
4	Longâ€Termâ€Stable Strong Second Harmonic Generation in Flexible DASTâ^PVDF Composite Films Realized by the Interface Interactions (Adv. Mater. Interfaces 17/2021). Advanced Materials Interfaces, 2021, 8, 2170096.	3.7	0
5	Reactive pulsed DC magnetron sputtering deposition of vanadium oxide thin films: Role of pulse frequency on the film growth and properties. Applied Surface Science, 2021, 562, 150138.	6.1	8
6	Fluorescences and underlying mechanisms of DAST solid-films and solutions. Optical Materials, 2021, , 111795.	3.6	2
7	Carbon nanotube versus graphene in modifying the electrical and optical properties of organic nonlinear optical material. Applied Nanoscience (Switzerland), 2020, 10, 1893-1901.	3.1	1
8	Broadband Terahertz Near-Perfect Absorbers. ACS Applied Materials & Interfaces, 2020, 12, 33352-33360.	8.0	59
9	Electrically controlled growths of 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate (DAST) organic microcrystals. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	2
10	Tunable organic metasurface based on 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST) single crystal. Optics Communications, 2020, 474, 126114.	2.1	3
11	Effects of copper doping of vanadium dioxide films on DC and terahertz conductivity. Journal of Applied Physics, 2020, 127, 033103.	2.5	2
12	Organic DAST Single Crystal Meta-Cavity Resonances at Terahertz Frequencies. ACS Photonics, 2019, 6, 1674-1680.	6.6	12
13	Growth of 4-N,N-Dimethylamino-4'-N'-methyl-stilbazolium Tosylate (DAST) Organic Single Crystals Controlled by Oleic Acid. Crystals, 2019, 9, 494.	2.2	4
14	Salisbury Screen Terahertz Absorber Formed with an Insulator: 4- <i>N</i> , <i>N</i> -Dimethylamino-4′- <i>N</i> ′-methyl-stilbazolium Tosylate (DAST). ACS Omega, 2019, 4, 9204-9210.	3.5	11
15	Stress-Tuning of Optical Rectification in Organic 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST). Optical Materials, 2019, 92, 251-254.	3.6	1
16	Percolation-amplified infrared sensitivity in titanium oxide-multi-walled carbon nanotube composite films. Nanotechnology, 2019, 30, 235702.	2.6	6
17	Pattered CNT-based composite films for optoelectronic applications. , 2019, , .		0
	A tunable Fabry–Perot filter (<mml:math)="" 0="" etqq0="" rg<="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>BT /Overlo</td><td>ock 10 Tf 50</td></mml:math>	BT /Overlo	ock 10 Tf 50

18

Communications, 2018, 414, 160-165.

XIANGDONG XU

#	Article	IF	CITATIONS
19	Single-Walled Carbon Nanotube-Controlled Meyer–Neldel Rules in Vanadium Oxide Films for Applications as Thermistor Materials in Sensors and Detectors. ACS Applied Nano Materials, 2018, 1, 6959-6966.	5.0	5
20	First-principles analysis of a molecular piezoelectric <i>meta</i> -nitroaniline. RSC Advances, 2018, 8, 16991-16996.	3.6	8
21	A terahertz study of taurine: Dispersion correction and mode couplings. Journal of Chemical Physics, 2017, 146, 124119.	3.0	12
22	Terahertz band-pass filters based on fishnet metamaterials fabricated on free-standing <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml25" display="inline" overflow="scroll" altimg="si25.gif"><mml:msub><mml:mrow><mml:mi mathvariant="normal">SiN</mml:mi </mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow>membrane. Optics Communications, 2017, 405, 22-28.</mml:msub></mml:math 	2.1 > <td>8 math></td>	8 math>
23	Vanadium oxide–carbon nanotube composite films characterized by spectroscopic ellipsometry. Journal Physics D: Applied Physics, 2016, 49, 405105.	2.8	1
24	Reaction mechanism and optimal conditions for preparation of high-quality vanadium oxide films by organic sol–gel for optoelectronic applications. Journal Physics D: Applied Physics, 2016, 49, 105105.	2.8	7
25	Chemical structures and physical properties of vanadium oxide films modified by single-walled carbon nanotubes. Physical Chemistry Chemical Physics, 2016, 18, 1422-1428.	2.8	16
26	Conversion of 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST) from a Simple Optical Material to a Versatile Optoelectronic Material. Scientific Reports, 2015, 5, 12269.	3.3	18
27	Electrical and optical polarization responses of composite films based on aligned carbon nanotubes. RSC Advances, 2015, 5, 86811-86816.	3.6	3
28	Effects of pulse frequency on the microstructure, composition and optical properties of pulsed dc reactively sputtered vanadium oxide thin films. Proceedings of SPIE, 2014, , .	0.8	0
29	Investigation of the influence of duty cycle on the vanadium oxide thin film thermistor deposited by pulsed dc reactvie magnetron sputtering. , 2014, , .		0
30	Effects of duty cycle and oxygen flow rate on the formation and properties of vanadium oxide films deposited by pulsed reactive sputtering. Vacuum, 2014, 104, 97-104.	3.5	16
31	Tunable hysteresis in metal-insulator transition of nanostructured vanadium oxide thin films deposited by reactive direct current magnetron sputtering. Thin Solid Films, 2014, 552, 218-224.	1.8	26
32	Electrical and optical properties of 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate (DAST) modified by carbon nanotubes. Journal of Materials Chemistry C, 2014, 2, 2394.	5.5	24
33	Chemical control of physical properties in silicon nitride films. Applied Physics A: Materials Science and Processing, 2013, 111, 867-876.	2.3	7
34	Hard and relaxed a-SiNxHy films prepared by PECVD: Structure analysis and formation mechanism. Applied Surface Science, 2013, 264, 823-831.	6.1	4
35	Effect of duty cycle on the electrical and optical properties of VOx film deposited by pulsed reactive magnetron sputtering. Proceedings of SPIE, 2013, , .	0.8	1
36	A comparison of structures and properties of SiNx and SiOx films prepared by PECVD. Journal of Non-Crystalline Solids, 2012, 358, 99-106.	3.1	10

XIANGDONG XU

#	Article	IF	CITATIONS
37	Silicon nanowires prepared by electron beam evaporation in ultrahigh vacuum. Nanoscale Research Letters, 2012, 7, 243.	5.7	9
38	Comparison of the optical responses of O-poor and O-rich thermochromic VOX films during semiconductor-to-metal transition. Journal of Physics and Chemistry of Solids, 2012, 73, 1122-1126.	4.0	13
39	A Monitoring System Design in Transmission Lines based on Wireless Sensor Networks. Energy Procedia, 2011, 12, 192-199.	1.8	15
40	Microstructures and thermochromic properties of tungsten doped vanadium oxide film prepared by using VOX–W–VOX sandwich structure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 762-766.	3.5	18
41	Electrical and optical properties of nanostructured VOX thin films prepared by direct current magnetron reactive sputtering and post-annealing in oxygen. Thin Solid Films, 2011, 519, 6203-6207.	1.8	15
42	Advanced design of microbolometers for uncooled infrared detectors. , 2011, , .		0
43	Electrical and optical properties of amorphous vanadium oxide thin films deposited by DC magnetron sputtering. , 2010, , .		0
44	Impact of substrate temperature on the microstructure, electrical and optical properties of sputtered nanoparticle V2O5 thin films. Vacuum, 2010, 85, 145-150.	3.5	43
45	Effect of temperature on the growth of vanadium oxide films deposited by DC reactive magnetron sputtering. Proceedings of SPIE, 2010, , .	0.8	Ο
46	Growth, electrical, and optical properties of nanocrystalline VO2 (011) thin films prepared by thermal oxidation of magnetron sputtered vanadium films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 595-599.	2.1	8
47	Controlling the growth of VOx films for various optoelectronic applications. , 2009, , .		Ο
48	High-quality silicon nitride films prepared by low-frequency plasma-enhanced chemical vapor deposition. , 2009, , .		2
49	Stress Engineering of SiNx Films for Modifying Optical and Mechanical Properties. Journal of Physical Chemistry C, 2009, 113, 4634-4640.	3.1	6
50	Substrate effect on the growth and thermal electrical properties of vanadium oxide thin films. , 2008, , .		1
51	Influence of substrate temperature on the morphology and thermal resistance of vanadium oxide thin films. Proceedings of SPIE, 2008, , .	0.8	1
52	Thin strain-relaxed SiGe grown by ultrahigh vacuum chemical vapor deposition. Applied Surface Science, 2006, 252, 7594-7598.	6.1	6
53	Surface modification of polystyrene by low energy hydrogen ion beam. Thin Solid Films, 2006, 514, 182-187.	1.8	23
54	Ultrathin Polymer Film Formation by Collision-Induced Cross-Linking of Adsorbed Organic Molecules with Hyperthermal Protons. Journal of the American Chemical Society, 2004, 126, 12336-12342.	13.7	38