List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3726020/publications.pdf Version: 2024-02-01

IAN EDENZEL

#	Article	IF	CITATIONS
1	Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Materialia, 2010, 58, 3444-3458.	3.8	696
2	Generalized Fabrication of Nanoporous Metals (Au, Pd, Pt, Ag, and Cu) through Chemical Dealloying. Journal of Physical Chemistry C, 2009, 113, 12629-12636.	1.5	413
3	On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Materialia, 2015, 90, 213-231.	3.8	320
4	Identification of Quaternary Shape Memory Alloys with Nearâ€Zero Thermal Hysteresis and Unprecedented Functional Stability. Advanced Functional Materials, 2010, 20, 1917-1923.	7.8	304
5	On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Materials and Structures, 2014, 23, 104002.	1.8	238
6	High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles. Journal of Alloys and Compounds, 2004, 385, 214-223.	2.8	177
7	The biocompatibility of dense and porous Nickel–Titanium produced by selective laser melting. Materials Science and Engineering C, 2013, 33, 419-426.	3.8	159
8	Fracture mechanics and microstructure in NiTi shape memory alloys. Acta Materialia, 2009, 57, 1015-1025.	3.8	145
9	Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading. Acta Materialia, 2010, 58, 2344-2354.	3.8	145
10	Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Materialia, 2013, 61, 3667-3686.	3.8	145
11	Influence of carbon on martensitic phase transformations in NiTi shape memory alloys. Acta Materialia, 2007, 55, 1331-1341.	3.8	132
12	Effect of temperature and texture on the reorientation of martensite variants in NiTi shape memory alloys. Acta Materialia, 2017, 127, 143-152.	3.8	122
13	High-temperature and low-stress creep anisotropy of single-crystal superalloys. Acta Materialia, 2013, 61, 2926-2943.	3.8	119
14	Composition-dependent crystal structure and martensitic transformation in Heusler Ni–Mn–Sn alloys. Acta Materialia, 2013, 61, 4648-4656.	3.8	102
15	Elementary Transformation and Deformation Processes and the Cyclic Stability of NiTi and NiTiCu Shape Memory Spring Actuators. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2530-2544.	1.1	97
16	NiTiâ€Based Elastocaloric Cooling on the Macroscale: From Basic Concepts to Realization. Energy Technology, 2018, 6, 1567-1587.	1.8	97
17	Powder metallurgical processing of NiTi shape memory alloys with elevated transformation temperatures. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 491, 270-278.	2.6	90
18	On the reaction between NiTi melts and crucible graphite during vacuum induction melting of NiTi shape memory alloys. Acta Materialia, 2005, 53, 3971-3985.	3.8	78

#	Article	IF	CITATIONS
19	Effect of low-temperature precipitation on the transformation characteristics of Ni-rich NiTi shape memory alloys during thermal cycling. Intermetallics, 2010, 18, 1172-1179.	1.8	76
20	Thermal Stabilization of NiTiCuV Shape Memory Alloys: Observations During Elastocaloric Training. Shape Memory and Superelasticity, 2015, 1, 132-141.	1.1	68
21	Martensitic transformation in rapidly solidified Heusler Ni49Mn39Sn12 ribbons. Acta Materialia, 2011, 59, 5692-5699.	3.8	63
22	Electrolytic processing of NiTi shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 191-199.	2.6	62
23	Suppression of Ni ₄ Ti ₃ Precipitation by Grain Size Refinement in Niâ€Rich NiTi Shape Memory Alloys. Advanced Engineering Materials, 2010, 12, 747-753.	1.6	60
24	Atomic ordering effect in Ni50Mn37Sn13 magnetocaloric ribbons. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 568-572.	2.6	59
25	Processing and property assessment of NiTi and NiTiCu shape memory actuator springs. Materialwissenschaft Und Werkstofftechnik, 2008, 39, 499-510.	0.5	57
26	Improvement of NiTi Shape Memory Actuator Performance Through Ultraâ€Fine Grained and Nanocrystalline Microstructures. Advanced Engineering Materials, 2011, 13, 256-268.	1.6	56
27	Length-Scale Modulated and Electrocatalytic Activity Enhanced Nanoporous Gold by Doping. Journal of Physical Chemistry C, 2011, 115, 4456-4465.	1.5	55
28	On the influence of thermomechanical treatments on the microstructure and phase transformation behavior of Ni–Ti–Fe shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 635-638.	2.6	50
29	An ultrafine nanoporous bimetallic Ag–Pd alloy with superior catalytic activity. CrystEngComm, 2010, 12, 4059.	1.3	46
30	R-phase formation in Ti39Ni45Cu16 shape memory thin films and bulk alloys discovered by combinatorial methods. Acta Materialia, 2009, 57, 4169-4177.	3.8	45
31	Processing of a single-crystalline CrCoNi medium-entropy alloy and evolution of its thermal expansion and elastic stiffness coefficients with temperature. Scripta Materialia, 2020, 177, 44-48.	2.6	44
32	Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid. Materials Science and Engineering C, 2017, 71, 473-482.	3.8	43
33	Chemical complexity, microstructure and martensitic transformation in high entropy shape memory alloys. Intermetallics, 2020, 122, 106792.	1.8	43
34	Hard X-ray studies of stress-induced phase transformations of superelastic NiTi shape memory alloys under uniaxial load. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 414-419.	2.6	42
35	The effect of cast microstructure and crystallography on rafting, dislocation plasticity and creep anisotropy of single crystal Ni-base superalloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 305-312.	2.6	41
36	Vacuum Induction Melting of Ternary NiTiX (X=Cu, Fe, Hf, Zr) Shape Memory Alloys Using Graphite Crucibles. Materials Transactions, 2006, 47, 661-669.	0.4	40

#	Article	IF	CITATIONS
37	Direct transmission electron microscopy observations of martensitic transformations in Ni-rich NiTi single crystals during in situ cooling and straining. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 452-456.	2.6	38
38	Damage evolution in pseudoelastic polycrystalline Co–Ni–Ga high-temperature shape memory alloys. Journal of Alloys and Compounds, 2015, 633, 288-295.	2.8	38
39	On the evolution of cast microstructures during processing of single crystal Ni-base superalloys using a Bridgman seed technique. Materials and Design, 2017, 128, 98-111.	3.3	38
40	Characterization of mechanical properties of hydroxyapatite–silicon–multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 337-352.	1.5	37
41	High-performance elastocaloric materials for the engineering of bulk- and micro-cooling devices. MRS Bulletin, 2018, 43, 280-284.	1.7	37
42	Site occupation of Nb atoms in ternary Ni–Ti–Nb shape memory alloys. Acta Materialia, 2014, 74, 85-95.	3.8	36
43	Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT) Tj ETQq1 1 (Processing, 2015, 620, 359-366.).784314 2.6	rgBT /Overloc 36
44	On Crystal Mosaicity in Single Crystal Ni-Based Superalloys. Crystals, 2019, 9, 149.	1.0	36
45	Induction Melting of NiTi Shape Memory Alloys– The Influence of the Commercial Crucible Graphite on Alloy Quality. Materialwissenschaft Und Werkstofftechnik, 2004, 35, 352-358.	0.5	34
46	Nanoindentation of a Pseudoelastic NiTiFe Shape Memory Alloy. Advanced Engineering Materials, 2010, 12, 13-19.	1.6	34
47	Structural and functional properties of NiTi shape memory alloys produced by Selective Laser Melting. , 2011, , 291-296.		31
48	Strain mapping of crack extension in pseudoelastic NiTi shape memory alloys during static loading. Acta Materialia, 2013, 61, 5800-5806.	3.8	31
49	Effect of martensitic transformation on the performance of coated NiTi surfaces. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 461-469.	2.6	30
50	On the Properties of Ni-Rich NiTi Shape Memory Parts Produced by Selective Laser Melting. , 2012, , .		30
51	Twinning-Induced Elasticity in NiTi Shape Memory Alloys. Shape Memory and Superelasticity, 2016, 2, 145-159.	1.1	29
52	On the rhenium segregation at the low angle grain boundary in a single crystal Ni-base superalloy. Scripta Materialia, 2020, 185, 88-93.	2.6	29
53	Dealloying strategy to fabricate ultrafine nanoporous gold-based alloys with high structural stability and tunable magnetic properties. CrystEngComm, 2012, 14, 8292.	1.3	28
54	On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys. Applied Surface Science, 2018, 427, 434-443.	3.1	26

#	Article	IF	CITATIONS
55	On the effect of grain boundary segregation on creep and creep rupture. Acta Materialia, 2012, 60, 2982-2998.	3.8	25
56	Ingot metallurgy and microstructural characterization of Ti–Ta alloys. International Journal of Materials Research, 2014, 105, 156-167.	0.1	25
57	Martensitic Transformations and Functional Stability in Ultra-Fine Grained NiTi Shape Memory Alloys. Materials Science Forum, 0, 584-586, 852-857.	0.3	24
58	On the Importance of Structural and Functional Fatigue in Shape Memory Technology. Shape Memory and Superelasticity, 2020, 6, 213-222.	1.1	24
59	Design of a Medical Non-Linear Drilling Device: The Influence of Twist and Wear on the Fatigue Behaviour of NiTi Wires Subjected to Bending Rotation. Materialwissenschaft Und Werkstofftechnik, 2004, 35, 320-325.	0.5	22
60	TEM observation of stress-induced martensite after nanoindentation of pseudoelastic Ti50Ni48Fe2. Scripta Materialia, 2008, 58, 743-746.	2.6	22
61	Orientation relationship between TiC carbides and B2 phase in as-cast and heat-treated NiTi shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 879-882.	2.6	21
62	Additive Manufacturing of Shape Memory Devices and Pseudoelastic Components. , 2013, , .		20
63	The influence of Si as reactive bonding agent in the electrophoretic coatings of HA–Si–MWCNTs on NiTi alloys. Journal of Materials Engineering and Performance, 2016, 25, 390-400.	1.2	20
64	On the competition between the stress-induced formation of martensite and dislocation plasticity during crack propagation in pseudoelastic NiTi shape memory alloys. Journal of Materials Research, 2017, 32, 4433-4442.	1.2	19
65	On the widths of the hysteresis of mechanically and thermally induced martensitic transformations in Ni–Ti-based shape memory alloys. International Journal of Materials Research, 2015, 106, 1029-1039.	0.1	18
66	Optimizing Ni–Ti-based shape memory alloys for ferroic cooling. Functional Materials Letters, 2017, 10, 1740001.	0.7	18
67	Development of Single-Crystal Ni-Base Superalloys Based on Multi-criteria Numerical Optimization and Efficient Use of Refractory Elements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4134-4145.	1.1	18
68	Elektrolytisches Bearbeiten von NiTi-FormgedÃæhtnislegierungen. Materials and Corrosion - Werkstoffe Und Korrosion, 2002, 53, 673-679.	0.8	17
69	Surface of Ti–Ni alloys after their preparation. Journal of Alloys and Compounds, 2009, 470, 568-573.	2.8	17
70	Athermal nature of the martensitic transformation in Heusler alloy Ni–Mn–Sn. Intermetallics, 2013, 36, 90-95.	1.8	17
71	On the functional degradation of binary titanium–tantalum high-temperature shape memory alloys — A new concept for fatigue life extension. Functional Materials Letters, 2014, 07, 1450042.	0.7	16
72	Cast-Replicated NiTiCu Foams with Superelastic Properties. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2939-2944.	1.1	15

#	Article	IF	CITATIONS
73	Microstructure, Shape Memory Effect and Functional Stability of Ti ₆₇ Ta ₃₃ Thin Films. Advanced Engineering Materials, 2015, 17, 1425-1433.	1.6	15
74	On the influence of small quantities of Bi and Sb on the evolution of microstructure during swaging and heat treatments in copper. Journal of Alloys and Compounds, 2011, 509, 4073-4080.	2.8	14
75	The effectiveness of coincidence site lattice criteria in predicting creep cavitation resistance. Journal of Materials Science, 2012, 47, 2915-2927.	1.7	14
76	Investigation of the Thinâ€ <scp>F</scp> ilm Phase Diagram of the Cr– <scp>N</scp> i– <scp>R</scp> e System by Highâ€ <scp>T</scp> hroughput Experimentation. Advanced Engineering Materials, 2014, 16, 588-593.	1.6	14
77	Plasticity induced by nanoindentation in a CrCoNi medium-entropy alloy studied by accurate electron channeling contrast imaging revealing dislocation-low angle grain boundary interactions. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 817. 141364.	2.6	14
78	Nanostructured Ti–Ta thin films synthesized by combinatorial glancing angle sputter deposition. Nanotechnology, 2016, 27, 495604.	1.3	13
79	Effect of off-stoichiometric compositions on microstructures and phase transformation behavior in Ni-Cu-Pd-Ti-Zr-Hf high entropy shape memory alloys. Journal of Alloys and Compounds, 2021, 857, 157467.	2.8	13
80	Identification of a ternary μ-phase in the Co-Ti-W system – An advanced correlative thin-film and bulk combinatorial materials investigation. Acta Materialia, 2017, 138, 100-110.	3.8	12
81	Bending rotation HCF testing of pseudoelastic Niâ€ī i shape memory alloys. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 633-640.	0.5	11
82	Microstructural evolution and functional fatigue of a Ti–25Ta high-temperature shape memory alloy. Journal of Materials Research, 2017, 32, 4287-4295.	1.2	11
83	Ni-base superalloy single crystal (SX) mosaicity characterized by the Rotation Vector Base Line Electron Back Scatter Diffraction (RVB-EBSD) method. Ultramicroscopy, 2019, 206, 112817.	0.8	11
84	Unusual composition dependence of transformation temperatures in Ti-Ta-X shape memory alloys. Physical Review Materials, 2018, 2, .	0.9	11
85	Cyclic degradation of titanium–tantalum high-temperature shape memory alloys — the role of dislocation activity and chemical decomposition. Functional Materials Letters, 2015, 08, 1550062.	0.7	10
86	Grain Nucleation and Growth in Deformed NiTi Shape Memory Alloys: An In Situ TEM Study. Shape Memory and Superelasticity, 2017, 3, 347-360.	1.1	10
87	Ancient technology/novel nanomaterials: casting titanium carbide nanowires. CrystEngComm, 2010, 12, 2835.	1.3	9
88	Microstructural evolution in a Ti – Ta high-temperature shape memory alloy during creep. International Journal of Materials Research, 2015, 106, 331-341.	0.1	8
89	Orientation-Dependent Deformation Behavior of 316L Steel Manufactured by Laser Metal Deposition and Casting under Local Scratch and Indentation Load. Materials, 2020, 13, 1765.	1.3	8
90	Burst-like reverse martensitic transformation during heating, cooling and under isothermal conditions in stabilized Ni-Ti-Nb. Scripta Materialia, 2020, 180, 23-28.	2.6	8

#	Article	IF	CITATIONS
91	Discovery of <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mmi:mi>ω </mmi:mi> -free high-temperature Ti-Ta-<mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mmi:mi>X</mmi:mi> shape memory</mmi:math </mmi:math 	0.9	7
92	On the evolution of microstructure in oxygen-free high conductivity copper during thermo-mechanical processing using rotary swaging. International Journal of Materials Research, 2011, 102, 363-370.	0.1	7
93	A Kinetic Study on the Evolution of Martensitic Transformation Behavior and Microstructures in Ti–Ta High-Temperature Shape-Memory Alloys During Aging. Shape Memory and Superelasticity, 2019, 5, 16-31.	1.1	6
94	A 3D Analysis of Dendritic Solidification and Mosaicity in Ni-Based Single Crystal Superalloys. Materials, 2021, 14, 4904.	1.3	6
95	The Effect of Increasing Chemical Complexity on the Mechanical and Functional Behavior of NiTi-Related Shape Memory Alloys. Shape Memory and Superelasticity, 2020, 6, 181-190.	1.1	6
96	Nanoindentation of Ti50Ni48Fe2 and Ti50Ni40Cu10 shape memory alloys. International Journal of Materials Research, 2009, 100, 594-602.	0.1	5
97	Phase Transformations and Functional Properties of NiTi Alloy with Ultrafine-Grained Structure. Materials Science Forum, 2010, 667-669, 1059-1064.	0.3	5
98	On the Oxidation Behavior and Its Influence on the Martensitic Transformation of Ti–Ta High-Temperature Shape Memory Alloys. Shape Memory and Superelasticity, 2019, 5, 63-72.	1.1	5
99	Reconciling Experimental and Theoretical Data in the Structural Analysis of Ti–Ta Shape-Memory Alloys. Shape Memory and Superelasticity, 2019, 5, 6-15.	1.1	5
100	Superelasticity of free-standing NiTi films depending on the oxygen impurity of the used targets. Materialwissenschaft Und Werkstofftechnik, 2004, 35, 359-364.	0.5	4
101	Path to single-crystalline repair and manufacture of Ni-based superalloy using directional annealing. Surface and Coatings Technology, 2021, 405, 126494.	2.2	4
102	On the influence of crystal defects on the functional stability of NiTi based shape memory alloys. , 2009, , .		4
103	Nano- and Microcrystal Investigations of Precipitates, Interfaces and Strain Fields in Ni-Ti-Nb by Various TEM Techniques. Materials Science Forum, 2013, 738-739, 65-71.	0.3	3
104	Investigation of ternary subsystems of superalloys by thin-film combinatorial synthesis and high-throughput analysis. MATEC Web of Conferences, 2014, 14, 18002.	0.1	3
105	Composition, Constitution and Phase Transformation Behavior in Thin-Film and Bulk Ti–Ni–Y. Shape Memory and Superelasticity, 2017, 3, 49-56.	1.1	3
106	Experimental and Theoretical Investigation on Phase Formation and Mechanical Properties in Cr–Co–Ni Alloys Processed Using a Novel Thin-Film Quenching Technique. ACS Combinatorial Science, 2020, 22, 232-247.	3.8	3
107	Elastocaloric Cooling With Ni-Ti Based Alloys: Material Characterization and Process Variation. , 2015,		2
108	Experimental Methods for Investigation of Shape Memory Based Elastocaloric Cooling Processes and Model Validation. Journal of Visualized Experiments, 2016, , .	0.2	2

#	Article	IF	CITATIONS
109	Impact of Heating–Cooling Rates on the Functional Properties of Ti–20Ta–5Al High-Temperature Shape Memory Alloys. Shape Memory and Superelasticity, 2019, 5, 95-105.	1.1	2
110	On the Influence of Alloy Composition on Creep Behavior of Ni-Based Single-Crystal Superalloys (SXs). Minerals, Metals and Materials Series, 2020, , 60-70.	0.3	2
111	The role of electrons during the martensitic phase transformation in NiTi-based shape memory alloys. Materials Today Physics, 2022, 24, 100671.	2.9	2
112	EM Characterization of Precipitates in as-Cast and Annealed Ni _{45.5} Ti _{45.5} Nb ₉ Shape Memory Alloys. Materials Science Forum, 0, 738-739, 113-117.	0.3	1
113	Strength of hydrogen-free and hydrogen-doped Ni50Ti50 shape memory platelets. Scripta Materialia, 2019, 162, 151-155.	2.6	1
114	Laboratory-Scale Processing and Performance Assessment of Ti–Ta High-Temperature Shape Memory Spring Actuators. Shape Memory and Superelasticity, 2021, 7, 222-234.	1.1	1
115	SEM Micrographs from NiTi-based Shape Memory Alloys after Mechanical Polishing and Electropolishing. Praktische Metallographie/Practical Metallography, 2006, 43, 599-613.	0.1	1
116	Thermomechanical Constraints on Pseudoelasticity During Nanoindentation of Binary and Ternary NiTi(Fe) Alloys. , 0, , 639-644.		0