Simon P Rout

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/372519/publications.pdf

Version: 2024-02-01

1039406 1058022 14 280 9 14 citations h-index g-index papers 14 14 14 298 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Sustained Bauxite Residue Rehabilitation with Gypsum and Organic Matter 16 years after Initial Treatment. Environmental Science & Environmental Scienc	4.6	79
2	Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site. Science of the Total Environment, 2016, 541, 1191-1199.	3.9	42
3	Evidence of the Generation of Isosaccharinic Acids and Their Subsequent Degradation by Local Microbial Consortia within Hyper-Alkaline Contaminated Soils, with Relevance to Intermediate Level Radioactive Waste Disposal. PLoS ONE, 2015, 10, e0119164.	1.1	29
4	Hydrogenotrophic Methanogenesis Under Alkaline Conditions. Frontiers in Microbiology, 2020, 11, 614227.	1.5	27
5	Biodegradation of the Alkaline Cellulose Degradation Products Generated during Radioactive Waste Disposal. PLoS ONE, 2014, 9, e107433.	1.1	25
6	Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities. PLoS ONE, 2015, 10, e0137682.	1.1	22
7	Whole-Genome Sequence of the Anaerobic Isosaccharinic Acid Degrading Isolate, Macellibacteroides fermentans Strain HH-ZS. Genome Biology and Evolution, 2017, 9, 2140-2144.	1.1	22
8	Draft Genome Sequence of Alkaliphilic Exiguobacterium sp. Strain HUD, Isolated from a Polymicrobial Consortia. Genome Announcements, 2015, 3, .	0.8	13
9	Microbial Community Evolution Is Significantly Impacted by the Use of Calcium Isosaccharinic Acid as an Analogue for the Products of Alkaline Cellulose Degradation. PLoS ONE, 2016, 11, e0165832.	1.1	10
10	The Impact of Biofilms upon Surfaces Relevant to an Intermediate Level Radioactive Waste Geological Disposal Facility under Simulated Near-Field Conditions. Geosciences (Switzerland), 2017, 7, 57.	1.0	4
11	Draft Genome Sequences of Pseudomonas aeruginosa Strain PS3 and Citrobacter freundii Strain SA79 Obtained from a Wound Dressing-Associated Biofilm. Genome Announcements, 2015, 3, .	0.8	2
12	Draft Whole-Genome Sequence of the Alkaliphilic Alishewanella aestuarii Strain HH-ZS, Isolated from Historical Lime Kiln Waste-Contaminated Soil. Genome Announcements, 2016, 4, .	0.8	2
13	Methanogenesis from Mineral Carbonates, a Potential Indicator for Life on Mars. Geosciences (Switzerland), 2022, 12, 138.	1.0	2
14	Draft Genome Sequence of the Biofilm-Forming Stenotrophomonas maltophilia Strain 53. Genome Announcements, 2015, 3, .	0.8	1