Chun Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3725069/publications.pdf

Version: 2024-02-01

45 1,143 papers citations

18 h-index 395702 33 g-index

45 all docs

45 docs citations 45 times ranked 1073 citing authors

#	Article	IF	CITATIONS
1	One-pot efficient conversion of glucose into biofuel 5-ethoxymethylfurfural catalyzed by zeolite solid catalyst. Biomass Conversion and Biorefinery, 2023, 13, 8927-8938.	4.6	6
2	Enhanced production of levulinic acid/ester from furfural residue via pretreatment and two-stage alcoholysis. Biomass Conversion and Biorefinery, 2023, 13, 2933-2946.	4.6	10
3	Effect of combined addition amount of nano zero-valent iron and biochar on methane production by anaerobic digestion of corn straw. Environment, Development and Sustainability, 2022, 24, 4709-4726.	5.0	7
4	Characterization and optimization of hydrothermal extraction of quercetin from <scp><i>Quercus</i></scp> leaves using response surface methodology. Canadian Journal of Chemical Engineering, 2022, 100, 598-606.	1.7	3
5	Enhancement of methane production by anaerobic digestion of corn straw with hydrogen-nanobubble water. Bioresource Technology, 2022, 344, 126220.	9.6	22
6	Oneâ€pot conversion of wheat straw into biobased chemicals in methanol/water medium using cheap mixed acid catalyst. Journal of the Science of Food and Agriculture, 2022, 102, 2826-2834.	3.5	3
7	Dynamics investigation on methane hydrate formation process with combined promotion methods. International Journal of Chemical Reactor Engineering, 2022, 20, 373-384.	1.1	1
8	Exergy analysis and optimization of bio-methane production from corn stalk pretreated by compound bacteria based on genetic algorithm. Bioresource Technology, 2022, 346, 126413.	9.6	6
9	Salt sealing induced in situ N-doped porous carbon derived from wheat bran for the removal of doxycycline from aqueous solution. Environmental Science and Pollution Research, 2022, 29, 49346-49360.	5.3	2
10	Optimized preparation of activated carbon from furfural residue using response surface methodology and its application for bisphenol S adsorption. Water Science and Technology, 2022, 85, 811-826.	2.5	2
11	Preparation of flame retardant polyurethane foam from crude glycerol based liquefaction of wheat straw. Industrial Crops and Products, 2021, 160, 113098.	5.2	30
12	Experimental and theoretical studies on glucose conversion in ethanol solution to 5-ethoxymethylfurfural and ethyl levulinate catalyzed by a Brønsted acid. Physical Chemistry Chemical Physics, 2021, 23, 19729-19739.	2.8	14
13	Optimization of basic magenta adsorption onto Fe/Cu nanocomposites synthesized by sweet potato leaf extract using response surface methodology. Korean Journal of Chemical Engineering, 2021, 38, 1556-1565.	2.7	4
14	Efficient Synthesis of Biobased Glycerol Levulinate Ketal and Its Application for Rigid Polyurethane Foam Production. Industrial & Engineering Chemistry Research, 2020, 59, 17520-17528.	3.7	17
15	Effects of Bi3+ co-doping on structure and luminescence of SrZn2(PO4)2-based phosphor. Journal of Materials Science: Materials in Electronics, 2020, 31, 10072-10077.	2.2	5
16	Effects of Metal-modified ZSM-5 Catalysts on Product Characteristics Based on the Py-GC/MS of Peanut Shells. Industrial & Description (2020, 59, 17307-17314).	3.7	4
17	Enhancement on enzymolysis of pigskin with ultrasonic assistance. Bioengineered, 2020, 11, 397-407.	3.2	4
18	Aluminum chlorideâ€catalyzed conversion of levulinic acid to methyl levulinate: optimization and kinetics. Journal of Chemical Technology and Biotechnology, 2020, 95, 2251-2260.	3.2	7

#	Article	IF	CITATIONS
19	Corncob-derived activated carbon for roxarsone removal from aqueous solution: isotherms, kinetics, and mechanism. Environmental Science and Pollution Research, 2020, 27, 15785-15797.	5.3	25
20	Efficient Catalytic Conversion of Waste Peanut Shells into Liquid Biofuel: An Artificial Intelligence Approach. Energy & Energy & 2020, 34, 1791-1801.	5.1	18
21	Bisphenol S adsorption with activated carbon prepared from corncob: optimization using response surface methodology. International Journal of Chemical Reactor Engineering, 2020, 18, .	1.1	1
22	Enhanced removal of nitrate and refractory organic pollutants from bio-treated coking wastewater using corncobs as carbon sources and biofilm carriers. Chemosphere, 2019, 237, 124520.	8.2	52
23	Efficient One-Pot Production of Biofuel 5-Ethoxymethylfurfural from Corn Stover: Optimization and Kinetics. Energy & Samp; Fuels, 2019, 33, 4310-4321.	5.1	24
24	Optimized Preparation of High Value-Added Activated Carbon and Its Adsorption Properties for Methylene Blue. International Journal of Chemical Reactor Engineering, 2019, 17, .	1.1	5
25	Efficient conversion of corn stover into 5-ethoxymethylfurfural catalyzed by zeolite USY in ethanol/THF medium. Industrial Crops and Products, 2019, 129, 503-511.	5.2	41
26	Thermal, Mechanical, and Morphological Properties of Rigid Crude Glycerolâ€Based Polyurethane Foams Reinforced With Nanoclay and Microcrystalline Cellulose. European Journal of Lipid Science and Technology, 2018, 120, 1700413.	1.5	23
27	Efficient conversion of wheat straw into methyl levulinate catalyzed by cheap metal sulfate in a biorefinery concept. Industrial Crops and Products, 2018, 117, 197-204.	5.2	28
28	Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis. Bioresource Technology, 2018, 259, 294-303.	9.6	79
29	The Integrated Process of Microbial Ensiling and Hot-Washing Pretreatment of Dry Corn Stover for Ethanol Production. Waste and Biomass Valorization, 2018, 9, 2031-2040.	3.4	5
30	Mutants of Scenedesmus sp. for purifying highly concentrated cellulosic ethanol wastewater and producing biomass simultaneously. Journal of Applied Phycology, 2018, 30, 969-978.	2.8	13
31	Kinetics Investigation of Hydrate-Based CO ₂ Capture from Simulated Flue Gas by Using an Improved Combinatorial Promoter. Energy & Energy & 10822-10829.	5.1	7
32	Cultivation of <i>Chlorella</i> mutant in cellulosic ethanol wastewater using a static mixing airlift photoâ€bioreactor for simultaneous wastewater treatment. Environmental Progress and Sustainable Energy, 2017, 36, 1274-1281.	2.3	4
33	Efficient one-pot synthesis of n-butyl levulinate from carbohydrates catalyzed by Fe 2 (SO 4) 3. Journal of Energy Chemistry, 2017, 26, 556-563.	12.9	52
34	Metal sulfates-catalyzed butanolysis of cellulose: butyl levulinate production and optimization. Cellulose, 2017, 24, 5403-5415.	4.9	24
35	Phase Equilibria of CO ₂ Hydrate Formation in Glucoamylase Aqueous Solutions. Journal of Chemical &	1.9	9
36	Direct Conversion of Carbohydrates into Ethyl Levulinate with Potassium Phosphotungstate as an Efficient Catalyst. Catalysts, 2015, 5, 1897-1910.	3.5	49

#	Article	IF	CITATIONS
37	Direct Production of Ethyl Levulinate from Carbohydrates Catalyzed by H-ZSM-5 Supported Phosphotungstic Acid. BioResources, 2015, 10, .	1.0	31
38	Thermal-structural Coupling and Fatigue Analysis on the Steam Explosion Equipment Based on ANSYS Workbench. , $2015, \dots$		0
39	Cellulose reactivity in ethanol at elevate temperature and the kinetics of one-pot preparation of ethyl levulinate from cellulose. Renewable Energy, 2015, 78, 583-589.	8.9	29
40	One-pot production of a liquid biofuel candidateâ€"Ethyl levulinate from glucose and furfural residues using a combination of extremely low sulfuric acid and zeolite USY. Fuel, 2015, 140, 365-370.	6.4	62
41	Kinetics of Glucose Ethanolysis Catalyzed by Extremely Low Sulfuric Acid in Ethanol Medium. Chinese Journal of Chemical Engineering, 2014, 22, 238-242.	3.5	26
42	A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts. Chemical Papers, 2013, 67, .	2.2	28
43	Production of ethyl levulinate by direct conversion of wheat straw in ethanol media. Bioresource Technology, 2012, 121, 93-99.	9.6	133
44	Levulinic acid production from wheat straw. Bioresource Technology, 2007, 98, 1448-1453.	9.6	228
45	Response surface optimization of extraction of rutin and quercetin from Cyclobalanopsis leaves by hydrothermal treatment catalyzed by ethanol-acetic acid. Biomass Conversion and Biorefinery, $0, 1$.	4.6	O