Neil A R Gow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3725060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluconazole resistant Candida auris clinical isolates have increased levels of cell wall chitin and increased susceptibility to a glucosamine-6-phosphate synthase inhibitor. Cell Surface, 2022, 8, 100076.	1.5	11
2	Sphingolipidomics of drug resistant Candida auris clinical isolates reveal distinct sphingolipid species signatures. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158815.	1.2	12
3	The protein kinase Ire1 impacts pathogenicity of <scp> <i>Candida albicans</i> </scp> by regulating homeostatic adaptation to endoplasmic reticulum stress. Cellular Microbiology, 2021, 23, e13307.	1.1	18
4	Clonal evolution of <i>Candida albicans, Candida glabrata</i> and <i>Candida dubliniensis</i> at oral niche level in health and disease. Journal of Oral Microbiology, 2021, 13, 1894047.	1.2	5
5	Dependence on Mincle and Dectin-2 Varies With Multiple Candida Species During Systemic Infection. Frontiers in Microbiology, 2021, 12, 633229.	1.5	6
6	Mycobiota dysbiosis: a new nexus in intestinal tumorigenesis. EMBO Journal, 2021, 40, e108175.	3.5	4
7	Immune cells fold and damage fungal hyphae. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
8	Inactivating the mannose-ethanolamine phosphotransferase Gpi7 confers caspofungin resistance in the human fungal pathogen Candida albicans. Cell Surface, 2021, 7, 100057.	1.5	4
9	Fungal cell wall components modulate our immune system. Cell Surface, 2021, 7, 100067.	1.5	10
10	Crosstalk between calcineurin and the cell wall integrity pathways prevents chitin overexpression in Candida albicans. Journal of Cell Science, 2021, , .	1.2	8
11	Complement-Mediated Differential Immune Response of Human Macrophages to Sporothrix Species Through Interaction With Their Cell Wall Peptidorhamnomannans. Frontiers in Immunology, 2021, 12, 749074.	2.2	9
12	The environmental stress sensitivities of pathogenic Candida species, including Candida auris, and implications for their spread in the hospital setting. Medical Mycology, 2020, 58, 744-755.	0.3	27
13	Ifu5, a WW domainâ€containing protein interacts with Efg1 to achieve coordination of normoxic and hypoxic functions to influence pathogenicity traits in <i>Candida albicans</i> . Cellular Microbiology, 2020, 22, e13140.	1.1	4
14	A Weakened Immune Response to Synthetic Exo-Peptides Predicts a Potential Biosecurity Risk in the Retrieval of Exo-Microorganisms. Microorganisms, 2020, 8, 1066.	1.6	1
15	Differences in fungal immune recognition by monocytes and macrophages: N-mannan can be a shield or activator of immune recognition. Cell Surface, 2020, 6, 100042.	1.5	30
16	Three Related Enzymes in Candida albicans Achieve Arginine- and Agmatine-Dependent Metabolism That Is Essential for Growth and Fungal Virulence. MBio, 2020, 11, .	1.8	15
17	Transcriptional and functional insights into the host immune response against the emerging fungal pathogen Candida auris. Nature Microbiology, 2020, 5, 1516-1531.	5.9	75
18	Scalar nanostructure of the Candida albicans cell wall; a molecular, cellular and ultrastructural analysis and interpretation. Cell Surface, 2020, 6, 100047.	1.5	39

#	Article	IF	CITATIONS
19	Biosensors and Diagnostics for Fungal Detection. Journal of Fungi (Basel, Switzerland), 2020, 6, 349.	1.5	31
20	Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. MBio, 2020, 11, .	1.8	275
21	Advances in Molecular Tools and In Vivo Models for the Study of Human Fungal Pathogenesis. Microorganisms, 2020, 8, 803.	1.6	12
22	Epitope Shaving Promotes Fungal Immune Evasion. MBio, 2020, 11, .	1.8	41
23	Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. PLoS Pathogens, 2020, 16, e1007927.	2.1	52
24	Immune recognition of putative alien microbial structures: Host–pathogen interactions in the age of space travel. PLoS Pathogens, 2020, 16, e1008153.	2.1	7
25	Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance. MBio, 2020, 11, .	1.8	16
26	Pseudohyphal Growth of the Emerging Pathogen Candida auris Is Triggered by Genotoxic Stress through the S Phase Checkpoint. MSphere, 2020, 5, .	1.3	48
27	The pattern recognition receptors dectin-2, mincle, and FcRÎ ³ impact the dynamics of phagocytosis of Candida, Saccharomyces, Malassezia, and Mucor species. PLoS ONE, 2019, 14, e0220867.	1.1	21
28	ECMM <i>Candi</i> Reg—A ready to use platform for outbreaks and epidemiological studies. Mycoses, 2019, 62, 920-927.	1.8	19
29	Dependence on Dectin-1 Varies With Multiple Candida Species. Frontiers in Microbiology, 2019, 10, 1800.	1.5	22
30	Candida albicans Factor H Binding Molecule Hgt1p – A Low Glucose-Induced Transmembrane Protein Is Trafficked to the Cell Wall and Impairs Phagocytosis and Killing by Human Neutrophils. Frontiers in Microbiology, 2019, 9, 3319.	1.5	24
31	ABC Transporter Genes Show Upregulated Expression in Drug-Resistant Clinical Isolates of Candida auris: A Genome-Wide Characterization of ATP-Binding Cassette (ABC) Transporter Genes. Frontiers in Microbiology, 2019, 10, 1445.	1.5	55
32	Rapid and extensive karyotype diversification in haploid clinical Candida auris isolates. Current Genetics, 2019, 65, 1217-1228.	0.8	44
33	Non-canonical signalling mediates changes in fungal cell wall PAMPs that drive immune evasion. Nature Communications, 2019, 10, 5315.	5.8	67
34	Memory in Fungal Pathogens Promotes Immune Evasion, Colonisation, and Infection. Trends in Microbiology, 2019, 27, 219-230.	3.5	32
35	The Viscoelastic Properties of the Fungal Cell Wall Allow Traffic of AmBisome as Intact Liposome Vesicles. MBio, 2018, 9, .	1.8	138
36	Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature, 2018, 555, 382-386.	13.7	157

#	Article	IF	CITATIONS
37	Using Preprints for Journal Clubs. MBio, 2018, 9, .	1.8	7
38	Titan cell production in Cryptococcus neoformans reshapes the cell wall and capsule composition during infection. Cell Surface, 2018, 1, 15-24.	1.5	52
39	Hypoxia Promotes Immune Evasion by Triggering β-Glucan Masking on the Candida albicans Cell Surface via Mitochondrial and cAMP-Protein Kinase A Signaling. MBio, 2018, 9, .	1.8	105
40	Gene Essentiality Analyzed by <i>In Vivo</i> Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of <i>Candida albicans</i> . MBio, 2018, 9, .	1.8	110
41	Single human B cell-derived monoclonal anti-Candida antibodies enhance phagocytosis and protect against disseminated candidiasis. Nature Communications, 2018, 9, 5288.	5.8	56
42	Yeast species-specific, differential inhibition of β-1,3-glucan synthesis by poacic acid and caspofungin. Cell Surface, 2018, 3, 12-25.	1.5	30
43	Hog1 Regulates Stress Tolerance and Virulence in the Emerging Fungal Pathogen Candida auris. MSphere, 2018, 3, .	1.3	61
44	The mycoparasitic yeast Saccharomycopsis schoenii predates and kills multi-drug resistant Candida auris. Scientific Reports, 2018, 8, 14959.	1.6	15
45	The type VI secretion system deploys antifungal effectors against microbial competitors. Nature Microbiology, 2018, 3, 920-931.	5.9	199
46	Drug-mediated metabolic tipping between antibiotic resistant states in a mixed-species community. Nature Ecology and Evolution, 2018, 2, 1312-1320.	3.4	14
47	Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial Cell, 2018, 5, 300-326.	1.4	81
48	Strategic Research Funding: A Success Story for Medical Mycology. Trends in Microbiology, 2018, 26, 811-813.	3.5	9
49	Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers. PLoS Neglected Tropical Diseases, 2018, 12, e0006169.	1.3	56
50	<i>Candida albicans</i> Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions. MBio, 2017, 8, .	1.8	87
51	Unlocking the Therapeutic Potential of the Fungal Cell Wall: Clinical Implications and Drug Resistance. , 2017, , 313-346.		5
52	The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology Spectrum, 2017, 5, .	1.2	736
53	Lactate signalling regulates fungal β-glucan masking and immune evasion. Nature Microbiology, 2017, 2, 16238.	5.9	197

#	Article	IF	CITATIONS
55	What Defines the "Kingdom―Fungi?. , 2017, , 57-77.		6
56	Fungal Sex: The Mucoromycota. , 2017, , 177-191.		3
57	Host-Microsporidia Interactions in Caenorhabditis elegans, a Model Nematode Host. , 2017, , 975-980.		2
58	Fungal Cell Cycle: A Unicellular versus Multicellular Comparison. , 2017, , 549-570.		0
59	The Fungal Tree of Life: From Molecular Systematics to Genome-Scale Phylogenies. , 2017, , 1-34.		25
60	The Complexity of Fungal Vision. , 2017, , 441-461.		0
61	The Geomycology of Elemental Cycling and Transformations in the Environment. , 2017, , 369-386.		1
62	Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases. , 2017, , 35-56.		10
63	Making Time: Conservation of Biological Clocks from Fungi to Animals. , 2017, , 515-534.		8
64	Fungal Ligninolytic Enzymes and Their Applications. , 2017, , 1049-1061.		2
65	Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats. , 2017, , 399-416.		1
66	Nutrient Sensing at the Plasma Membrane of Fungal Cells. , 2017, , 417-439.		4
67	Nematode-Trapping Fungi. , 2017, , 963-974.		4
68	Bacterial Endosymbionts: Master Modulators of Fungal Phenotypes. , 2017, , 981-1004.		6
69	Molecular Mechanisms Regulating Cell Fusion and Heterokaryon Formation in Filamentous Fungi. , 2017, , 215-229.		9
70	Fungi that Infect Humans. , 2017, , 811-843.		8
71	The Mycobiome: Impact on Health and Disease States. , 2017, , 845-854.		3
72	Fungal Biofilms: Inside Out. , 2017, , 873-886.		6

#	Article	IF	CITATIONS
73	Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products. , 2017, , 1027-1048.		3
74	Thigmo Responses: The Fungal Sense of Touch. , 2017, , 487-507.		0
75	Amyloid Prions in Fungi. , 2017, , 673-685.		0
76	Fungal Recognition and Host Defense Mechanisms. , 2017, , 887-902.		1
77	Macrophage Migration Is Impaired within Candida albicans Biofilms. Journal of Fungi (Basel,) Tj ETQq1 1 0.7843	l 4 rgBT /O 1.5	verlock 10 T
78	Candida albicans Yeast, Pseudohyphal, and Hyphal Morphogenesis Differentially Affects Immune Recognition. Frontiers in Immunology, 2017, 8, 629.	2.2	125
79	Phosphomannosylation and the Functional Analysis of the Extended Candida albicans MNN4-Like Gene Family. Frontiers in Microbiology, 2017, 8, 2156.	1.5	25
80	Zinc Limitation Induces a Hyper-Adherent Goliath Phenotype in Candida albicans. Frontiers in Microbiology, 2017, 8, 2238.	1.5	42
81	Microbe Profile: Candida albicans: a shape-changing, opportunistic pathogenic fungus of humans. Microbiology (United Kingdom), 2017, 163, 1145-1147.	0.7	118
82	Elevated catalase expression in a fungal pathogen is a double-edged sword of iron. PLoS Pathogens, 2017, 13, e1006405.	2.1	43
83	Medical mycology and fungal immunology: new research perspectives addressing a major world health challenge. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150462.	1.8	50
84	Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160332.	1.8	103
85	The Role of Dectin-2 for Host Defense Against Disseminated Candidiasis. Journal of Interferon and Cytokine Research, 2016, 36, 267-276.	0.5	45
86	Cell biology of Candida albicans–host interactions. Current Opinion in Microbiology, 2016, 34, 111-118.	2.3	126
87	Editorial for "the fungal cell wall―special issue. Cellular Microbiology, 2016, 18, 1187-1187.	1.1	1
88	Drug resistance in eukaryotic microorganisms. Nature Microbiology, 2016, 1, 16092.	5.9	118
89	The importance of subclasses of chitin synthase enzymes with myosin-like domains for the fitness of fungi. Fungal Biology Reviews, 2016, 30, 1-14.	1.9	33
90	Interactions of fungal pathogens with phagocytes. Nature Reviews Microbiology, 2016, 14, 163-176.	13.6	550

#	Article	IF	CITATIONS
91	Clonal Strain Persistence of Candida albicans Isolates from Chronic Mucocutaneous Candidiasis Patients. PLoS ONE, 2016, 11, e0145888.	1.1	29
92	The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence. PLoS Pathogens, 2016, 12, e1005566.	2.1	74
93	Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress Adaptation and Virulence in Candida albicans. PLoS ONE, 2015, 10, e0126940.	1.1	35
94	Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans. PLoS ONE, 2015, 10, e0137750.	1.1	57
95	The Candida albicans Exocyst Subunit Sec6 Contributes to Cell Wall Integrity and Is a Determinant of Hyphal Branching. Eukaryotic Cell, 2015, 14, 684-697.	3.4	12
96	Rab14 Regulates Maturation of Macrophage Phagosomes Containing the Fungal Pathogen Candida albicans and Outcome of the Host-Pathogen Interaction. Infection and Immunity, 2015, 83, 1523-1535.	1.0	42
97	Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance. MBio, 2015, 6, e00986.	1.8	169
98	Caspofungin Treatment of Aspergillus fumigatus Results in ChsG-Dependent Upregulation of Chitin Synthesis and the Formation of Chitin-Rich Microcolonies. Antimicrobial Agents and Chemotherapy, 2015, 59, 5932-5941.	1.4	66
99	Cell wall protection by the Candida albicans class I chitin synthases. Fungal Genetics and Biology, 2015, 82, 264-276.	0.9	26
100	β-1,2-Mannosyltransferases 1 and 3 Participate in Yeast and Hyphae O- and N-Linked Mannosylation and Alter Candida albicans Fitness During Infection. Open Forum Infectious Diseases, 2015, 2, ofv116.	0.4	18
101	<i>Candida albicans</i> colonization and dissemination from the murine gastrointestinal tract: the influence of morphology and Th17 immunity. Cellular Microbiology, 2015, 17, 445-450.	1.1	66
102	Novel insights into host-fungal pathogen interactions derived from live-cell imaging. Seminars in Immunopathology, 2015, 37, 131-139.	2.8	32
103	Murine Model for Fusarium oxysporum Invasive Fusariosis Reveals Organ-Specific Structures for Dissemination and Long-Term Persistence. PLoS ONE, 2014, 9, e89920.	1.1	14
104	New Clox Systems for Rapid and Efficient Gene Disruption in Candida albicans. PLoS ONE, 2014, 9, e100390.	1.1	34
105	Hyphal Growth of Phagocytosed Fusarium oxysporum Causes Cell Lysis and Death of Murine Macrophages. PLoS ONE, 2014, 9, e101999.	1.1	9
106	Cdc42 GTPase dynamics control directional growth responses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 811-816.	3.3	38
107	Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation. PLoS Pathogens, 2014, 10, e1004050.	2.1	215
108	Candida albicans Hypha Formation and Mannan Masking of β-Glucan Inhibit Macrophage Phagosome Maturation. MBio, 2014, 5, e01874.	1.8	138

#	Article	IF	CITATIONS
109	Expansion of Foxp3 ⁺ Tâ€cell populations by <i>Candida albicans</i> enhances both Th17â€cell responses and fungal dissemination after intravenous challenge. European Journal of Immunology, 2014, 44, 1069-1083.	1.6	55
110	Trained Immunity or Tolerance: Opposing Functional Programs Induced in Human Monocytes after Engagement of Various Pattern Recognition Receptors. Vaccine Journal, 2014, 21, 534-545.	3.2	262
111	Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends in Microbiology, 2014, 22, 614-622.	3.5	208
112	Role of Dectin-2 for Host Defense against Systemic Infection with Candida glabrata. Infection and Immunity, 2014, 82, 1064-1073.	1.0	100
113	Antifungal resistance: more research needed. Lancet, The, 2014, 384, 1427.	6.3	20
114	Mechanisms Underlying the Exquisite Sensitivity of Candida albicans to Combinatorial Cationic and Oxidative Stress That Enhances the Potent Fungicidal Activity of Phagocytes. MBio, 2014, 5, e01334-14.	1.8	76
115	Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genetics and Biology, 2014, 70, 42-67.	0.9	133
116	Modulation of Alternaria infectoria Cell Wall Chitin and Glucan Synthesis by Cell Wall Synthase Inhibitors. Antimicrobial Agents and Chemotherapy, 2014, 58, 2894-2904.	1.4	28
117	Regulation of vectorial supply of vesicles to the hyphal tip determines thigmotropism in Neurospora crassa. Fungal Biology, 2014, 118, 287-294.	1.1	21
118	1 From Commensal to Pathogen: Candida albicans. , 2014, , 3-18.		7
119	Multiple mating strategies. Nature, 2013, 494, 45-46.	13.7	4
120	Role of the Candida albicans MNN1 gene family in cell wall structure and virulence. BMC Research Notes, 2013, 6, 294.	0.6	23
121	Reporters for the analysis of N-glycosylation in Candida albicans. Fungal Genetics and Biology, 2013, 56, 107-115.	0.9	6
122	Elevated Chitin Content Reduces the Susceptibility of Candida Species to Caspofungin. Antimicrobial Agents and Chemotherapy, 2013, 57, 146-154.	1.4	156
123	Altered Dynamics of Candida albicans Phagocytosis by Macrophages and PMNs When Both Phagocyte Subsets Are Present. MBio, 2013, 4, e00810-13.	1.8	56
124	Differential Adaptation of Candida albicans In Vivo Modulates Immune Recognition by Dectin-1. PLoS Pathogens, 2013, 9, e1003315.	2.1	181
125	The Mnn2 Mannosyltransferase Family Modulates Mannoprotein Fibril Length, Immune Recognition and Virulence of Candida albicans. PLoS Pathogens, 2013, 9, e1003276.	2.1	102
126	<i>Candida albicans</i> Primes TLR Cytokine Responses through a Dectin-1/Raf-1–Mediated Pathway. Journal of Immunology, 2013, 190, 4129-4135.	0.4	57

#	Article	IF	CITATIONS
127	Cell wall stress induces alternative fungal cytokinesis and septation strategies. Journal of Cell Science, 2013, 126, 2668-77.	1.2	36
128	A developmental program for Candida commensalism. Nature Genetics, 2013, 45, 967-968.	9.4	18
129	Mannosylation in <i><scp>C</scp>andida albicans</i> : role in cell wall function and immune recognition. Molecular Microbiology, 2013, 90, 1147-1161.	1.2	168
130	Differential Virulence of Candida glabrata Glycosylation Mutants*. Journal of Biological Chemistry, 2013, 288, 22006-22018.	1.6	57
131	Live-cell Video Microscopy of Fungal Pathogen Phagocytosis. Journal of Visualized Experiments, 2013, ,	0.2	21
132	Anti-Candida Targets and Cytotoxicity of Casuarinin Isolated from Plinia cauliflora Leaves in a Bioactivity-Guided Study. Molecules, 2013, 18, 8095-8108.	1.7	16
133	From START to FINISH: The Influence of Osmotic Stress on the Cell Cycle. PLoS ONE, 2013, 8, e68067.	1.1	27
134	Cytosolic Phospholipase A2α and Eicosanoids Regulate Expression of Genes in Macrophages Involved in Host Defense and Inflammation. PLoS ONE, 2013, 8, e69002.	1.1	38
135	Does Candida Albicans Play a Role in the Etiology of Endometriosis?. Journal of Endometriosis and Pelvic Pain Disorders, 2013, 5, 2-9.	0.3	1
136	Stage Specific Assessment of Candida albicans Phagocytosis by Macrophages Identifies Cell Wall Composition and Morphogenesis as Key Determinants. PLoS Pathogens, 2012, 8, e1002578.	2.1	120
137	Elevated Cell Wall Chitin in Candida albicans Confers Echinocandin Resistance <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2012, 56, 208-217.	1.4	181
138	The Evolutionary Rewiring of Ubiquitination Targets Has Reprogrammed the Regulation of Carbon Assimilation in the Pathogenic Yeast Candida albicans. MBio, 2012, 3, .	1.8	102
139	Hidden Killers: Human Fungal Infections. Science Translational Medicine, 2012, 4, 165rv13.	5.8	3,368
140	Non-lytic expulsion/exocytosis of Candida albicans from macrophages. Fungal Genetics and Biology, 2012, 49, 677-678.	0.9	89
141	Candida albicans infection inhibits macrophage cell division and proliferation. Fungal Genetics and Biology, 2012, 49, 679-680.	0.9	25
142	Combinatorial stresses kill pathogenic <i>Candida</i> species. Medical Mycology, 2012, 50, 699-709.	0.3	79
143	Nitrosative stress and combinatorial stresses in the pathogen Candida albicans. Nitric Oxide - Biology and Chemistry, 2012, 27, S44.	1.2	0
144	Biochemical characterization of recombinant Candida albicans mannosyltransferases Mnt1, Mnt2 and Mnt5 reveals new functions in O- and N-mannan biosynthesis. Biochemical and Biophysical Research Communications, 2012, 419, 77-82.	1.0	39

#	Article	IF	CITATIONS
145	A systems biology analysis of long and short-term memories of osmotic stress adaptation in fungi. BMC Research Notes, 2012, 5, 258.	0.6	28
146	β(1,3)-glucan synthase complex fromAlternaria infectoria, a rare dematiaceous human pathogen. Medical Mycology, 2012, 50, 716-725.	0.3	14
147	Importance of the Candida albicans cell wall during commensalism and infection. Current Opinion in Microbiology, 2012, 15, 406-412.	2.3	281
148	Identification of vacuole defects in fungi. Journal of Microbiological Methods, 2012, 91, 155-163.	0.7	35
149	Tropic Orientation Responses of Pathogenic Fungi. Topics in Current Genetics, 2012, , 21-41.	0.7	14
150	A case for case reports—And a new publishing platform for clinical mycology. Medical Mycology Case Reports, 2012, 1, 17-18.	0.7	1
151	Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nature Reviews Microbiology, 2012, 10, 112-122.	13.6	693
152	Interactions Between Macrophages and Cell Wall Oligosaccharides of Candida albicans. Methods in Molecular Biology, 2012, 845, 247-260.	0.4	23
153	Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cellular Microbiology, 2012, 14, 1319-1335.	1.1	274
154	Murine Bone Marrow-Derived Dendritic Cells and T-Cell Activation by Candida albicans. Methods in Molecular Biology, 2012, 845, 261-275.	0.4	0
155	Glycosylation status of theC. albicanscell wall affects the efficiency of neutrophil phagocytosis and killing but not cytokine signaling. Medical Mycology, 2011, 49, 1-12.	0.3	38
156	Recognition and Blocking of Innate Immunity Cells by Candida albicans Chitin. Infection and Immunity, 2011, 79, 1961-1970.	1.0	172
157	Nitric oxide and nitrosative stress tolerance in yeast. Biochemical Society Transactions, 2011, 39, 219-223.	1.6	45
158	Wild-type <i>Drosophila melanogaster</i> as an alternative model system for investigating the pathogenicity of <i>Candida albicans</i> . DMM Disease Models and Mechanisms, 2011, 4, 504-514.	1.2	45
159	Differential Regulation of Kidney and Spleen Cytokine Responses in Mice Challenged with Pathology-Standardized Doses of <i>Candida albicans</i> Mannosylation Mutants. Infection and Immunity, 2011, 79, 146-152.	1.0	14
160	Fig1 Facilitates Calcium Influx and Localizes to Membranes Destined To Undergo Fusion during Mating in Candida albicans. Eukaryotic Cell, 2011, 10, 435-444.	3.4	37
161	The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of <i>Candida albicans</i> . Journal of Leukocyte Biology, 2011, 90, 357-366.	1.5	169
162	Candida albicans Cell Wall Glycosylation May Be Indirectly Required for Activation of Epithelial Cell Proinflammatory Responses. Infection and Immunity, 2011, 79, 4902-4911.	1.0	44

#	Article	IF	CITATIONS
163	A Multifunctional Mannosyltransferase Family in Candida albicans Determines Cell Wall Mannan Structure and Host-Fungus Interactions. Journal of Biological Chemistry, 2010, 285, 12087-12095.	1.6	106
164	Phosphorylation regulates polarisation of chitin synthesis in Candida albicans. Journal of Cell Science, 2010, 123, 2199-2206.	1.2	33
165	Contribution of <i>Candida albicans</i> Cell Wall Components to Recognition by and Escape from Murine Macrophages. Infection and Immunity, 2010, 78, 1650-1658.	1.0	225
166	Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans. Microbiology (United Kingdom), 2010, 156, 1476-1486.	0.7	73
167	CO2 Acts as a Signalling Molecule in Populations of the Fungal Pathogen Candida albicans. PLoS Pathogens, 2010, 6, e1001193.	2.1	104
168	Chitin synthesis and fungal pathogenesis. Current Opinion in Microbiology, 2010, 13, 416-423.	2.3	363
169	Fungal echinocandin resistance. Fungal Genetics and Biology, 2010, 47, 117-126.	0.9	228
170	Melanin Externalization in Candida albicans Depends on Cell Wall Chitin Structures. Eukaryotic Cell, 2010, 9, 1329-1342.	3.4	85
171	Variable recognition of <i>Candida albicans</i> strains by TLR4 and lectin recognition receptors. Medical Mycology, 2010, 48, 897-903.	0.3	64
172	Property Differences among the Four Major <i>Candida albicans</i> Strain Clades. Eukaryotic Cell, 2009, 8, 373-387.	3.4	138
173	Toll-Like Receptor 9-Dependent Activation of Myeloid Dendritic Cells by Deoxynucleic Acids from <i>Candida albicans</i> . Infection and Immunity, 2009, 77, 3056-3064.	1.0	98
174	Protein glycosylation in <i>Candida</i> . Future Microbiology, 2009, 4, 1167-1183.	1.0	79
175	Regulation of pentraxin-3 by antioxidants. British Journal of Anaesthesia, 2009, 103, 833-839.	1.5	26
176	Loss of mannosylphosphate from Candida albicans cell wall proteins results in enhanced resistance to the inhibitory effect of a cationic antimicrobial peptide via reduced peptide binding to the cell surface. Microbiology (United Kingdom), 2009, 155, 1058-1070.	0.7	51
177	Glucose Promotes Stress Resistance in the Fungal Pathogen <i>Candida albicans</i> . Molecular Biology of the Cell, 2009, 20, 4845-4855.	0.9	168
178	Bypassing Pathogenâ€Induced Inflammasome Activation for the Regulation of Interleukinâ€1β Production by the Fungal Pathogen <i>Candida albicans</i> . Journal of Infectious Diseases, 2009, 199, 1087-1096.	1.9	70
179	Pseudohypha budding patterns of <i>Candida albicans</i> . Medical Mycology, 2009, 47, 268-275.	0.3	33
180	Fungal Morphogenesis: Some Like It Hot. Current Biology, 2009, 19, R333-R334.	1.8	7

#	Article	IF	CITATIONS
181	Dissection of the Candida albicans class I chitin synthase promoters. Molecular Genetics and Genomics, 2009, 281, 459-71.	1.0	30
182	<i>Paenibacillus polymyxa</i> antagonizes oomycete plant pathogens <i>Phytophthora palmivora</i> and <i>Pythium aphanidermatum</i> . Journal of Applied Microbiology, 2009, 106, 1473-1481.	1.4	80
183	Proteomic and phenotypic profiling of the amphibian pathogen <i>Batrachochytrium dendrobatidis</i> shows that genotype is linked to virulence. Molecular Ecology, 2009, 18, 415-429.	2.0	138
184	Vacuole inheritance regulates cell size and branching frequency of <i>Candida albicans</i> hyphae. Molecular Microbiology, 2009, 71, 505-519.	1.2	41
185	Calcium homeostasis is required for contactâ€dependent helical and sinusoidal tip growth in <i>Candida albicans</i> hyphae. Molecular Microbiology, 2009, 71, 1155-1164.	1.2	60
186	Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009, 459, 657-662.	13.7	963
187	<i>Candida albicans ABG1</i> gene is involved in endocytosis. FEMS Yeast Research, 2009, 9, 293-300.	1.1	7
188	Pattern recognition: recent insights from Dectin-1. Current Opinion in Immunology, 2009, 21, 30-37.	2.4	252
189	Genome-wide analysis of Candida albicans gene expression patterns during infection of the mammalian kidney. Fungal Genetics and Biology, 2009, 46, 210-219.	0.9	87
190	Mechanisms of hypha orientation of fungi. Current Opinion in Microbiology, 2009, 12, 350-357.	2.3	128
191	Comparative genomics of the fungal pathogens <i>Candida dubliniensis</i> and <i>Candida albicans</i> . Genome Research, 2009, 19, 2231-2244.	2.4	195
192	Comparative genomics of MAP kinase and calcium–calcineurin signalling components in plant and human pathogenic fungi. Fungal Genetics and Biology, 2009, 46, 287-298.	0.9	302
193	Early-Expressed Chemokines Predict Kidney Immunopathology in Experimental Disseminated Candida albicans Infections. PLoS ONE, 2009, 4, e6420.	1.1	64
194	Syk kinase is required for collaborative cytokine production induced through Dectinâ€1 and Tollâ€like receptors. European Journal of Immunology, 2008, 38, 500-506.	1.6	328
195	Cell wall glycans and soluble factors determine the interactions between the hyphae of <i>Candida albicans</i> and <i>Pseudomonas aeruginosa</i> . FEMS Microbiology Letters, 2008, 287, 48-55.	0.7	80
196	MixedCandida albicansstrain populations in colonized and infected mucosal tissues. FEMS Yeast Research, 2008, 8, 1334-1338.	1.1	44
197	Vacuolar dynamics during the morphogenetic transition in <i>Candida albicans</i> . FEMS Yeast Research, 2008, 8, 1339-1348.	1.1	21
198	An integrated model of the recognition of Candida albicans by the innate immune system. Nature Reviews Microbiology, 2008, 6, 67-78.	13.6	779

#	Article	IF	CITATIONS
199	Host–microbe interactions: innate pattern recognition of fungal pathogens. Current Opinion in Microbiology, 2008, 11, 305-312.	2.3	140
200	Vacuoles and fungal biology. Current Opinion in Microbiology, 2008, 11, 503-510.	2.3	87
201	Comparison of Candida albicans strain types among isolates from three countries. International Journal of Medical Microbiology, 2008, 298, 663-668.	1.5	19
202	Molecular phylogenetic analysis of Candida tropicalis isolates by multi-locus sequence typing. Fungal Genetics and Biology, 2008, 45, 1040-1042.	0.9	22
203	Functional analysis of Candida albicans GPI-anchored proteins: Roles in cell wall integrity and caspofungin sensitivity. Fungal Genetics and Biology, 2008, 45, 1404-1414.	0.9	212
204	Mitochondrial haplotypes and recombination in <i>Candida albicans</i> . Medical Mycology, 2008, 46, 647-654.	0.3	17
205	Internuclear gene silencing in Phytophthora infestans is established through chromatin remodelling. Microbiology (United Kingdom), 2008, 154, 1482-1490.	0.7	71
206	Dendritic Cell Interaction with Candida albicans Critically Depends on N-Linked Mannan. Journal of Biological Chemistry, 2008, 283, 20590-20599.	1.6	209
207	Stimulation of Chitin Synthesis Rescues Candida albicans from Echinocandins. PLoS Pathogens, 2008, 4, e1000040.	2.1	351
208	An Internal Polarity Landmark Is Important for Externally Induced Hyphal Behaviors in <i>Candida albicans</i> . Eukaryotic Cell, 2008, 7, 712-720.	3.4	55
209	Kex2 protease converts the endoplasmic reticulum α1,2-mannosidase of Candida albicans into a soluble cytosolic form. Microbiology (United Kingdom), 2008, 154, 3782-3794.	0.7	14
210	Immune Recognition of <i>Candida albicans</i> βâ€glucan by Dectinâ€1. Journal of Infectious Diseases, 2007, 196, 1565-1571.	1.9	277
211	Candida albicans Iff11, a Secreted Protein Required for Cell Wall Structure and Virulence. Infection and Immunity, 2007, 75, 2922-2928.	1.0	45
212	Molecular Phylogenetics of Candida albicans. Eukaryotic Cell, 2007, 6, 1041-1052.	3.4	285
213	Strain Typing and Determination of Population Structure of Candida krusei by Multilocus Sequence Typing. Journal of Clinical Microbiology, 2007, 45, 317-323.	1.8	70
214	Endoplasmic Reticulum α-Glycosidases of <i>Candida albicans</i> Are Required for N Glycosylation, Cell Wall Integrity, and Normal Host-Fungus Interaction. Eukaryotic Cell, 2007, 6, 2184-2193.	3.4	116
215	One year prospective survey of Candida bloodstream infections in Scotland. Journal of Medical Microbiology, 2007, 56, 1066-1075.	0.7	164
216	Azole antifungals induce up-regulation of SAP4, SAP5 and SAP6 secreted proteinase genes in filamentous Candida albicans cells in vitro and in vivo. Journal of Antimicrobial Chemotherapy, 2007, 61, 315-322.	1.3	13

#	Article	IF	CITATIONS
217	Developmental Regulation of an Adhesin Gene during Cellular Morphogenesis in the Fungal Pathogen Candida albicans. Eukaryotic Cell, 2007, 6, 682-692.	3.4	107
218	Multilocus Sequence Typing of the Pathogenic Fungus Aspergillus fumigatus. Journal of Clinical Microbiology, 2007, 45, 1469-1477.	1.8	134
219	Infection-related gene expression in Candida albicans. Current Opinion in Microbiology, 2007, 10, 307-313.	2.3	136
220	The PKC, HOG and Ca2+signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Molecular Microbiology, 2007, 63, 1399-1413.	1.2	285
221	Individual chitin synthase enzymes synthesize microfibrils of differing structure at specific locations in the <i>Candida albicans</i> cell wall. Molecular Microbiology, 2007, 66, 1164-1173.	1.2	79
222	Hyphal Orientation of Candida albicans Is Regulated by a Calcium-Dependent Mechanism. Current Biology, 2007, 17, 347-352.	1.8	140
223	Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cellular Microbiology, 2006, 8, 961-971.	1.1	322
224	Outer Chain N-Glycans Are Required for Cell Wall Integrity and Virulence of Candida albicans. Journal of Biological Chemistry, 2006, 281, 90-98.	1.6	214
225	Candida albicans VAC8 Is Required for Vacuolar Inheritance and Normal Hyphal Branching. Eukaryotic Cell, 2006, 5, 359-367.	3.4	32
226	Candida albicans Strain Maintenance, Replacement, and Microvariation Demonstrated by Multilocus Sequence Typing. Journal of Clinical Microbiology, 2006, 44, 3647-3658.	1.8	138
227	Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. Journal of Clinical Investigation, 2006, 116, 1642-1650.	3.9	632
228	Large-Scale Gene Discovery in the Oomycete Phytophthora infestans Reveals Likely Components of Phytopathogenicity Shared with True Fungi. Molecular Plant-Microbe Interactions, 2005, 18, 229-243.	1.4	160
229	Fungal Genomics: Forensic Evidence of Sexual Activity. Current Biology, 2005, 15, R509-R511.	1.8	10
230	Report on a meeting – New Zealand Microbiology Society â€~Microbes outside the square' Palmerston North, 17–19th November, 2005. The Mycologist, 2005, 19, 71.	0.5	0
231	A Human-Curated Annotation of the Candida albicans Genome. PLoS Genetics, 2005, 1, e1.	1.5	293
232	Global Role of the Protein Kinase Gcn2 in the Human Pathogen Candida albicans. Eukaryotic Cell, 2005, 4, 1687-1696.	3.4	58
233	Population Structure and Properties of Candida albicans , as Determined by Multilocus Sequence Typing. Journal of Clinical Microbiology, 2005, 43, 5601-5613.	1.8	194
234	Mnt1p and Mnt2p of Candida albicans Are Partially Redundant α-1,2-Mannosyltransferases That Participate in O-Linked Mannosylation and Are Required for Adhesion and Virulence. Journal of Biological Chemistry, 2005, 280, 1051-1060.	1.6	173

#	Article	IF	CITATIONS
235	Candida orthopsilosis and Candida metapsilosis spp. nov. To Replace Candida parapsilosis Groups II and III. Journal of Clinical Microbiology, 2005, 43, 284-292.	1.8	520
236	ABG1 , a Novel and Essential Candida albicans Gene Encoding a Vacuolar Protein Involved in Cytokinesis and Hyphal Branching. Eukaryotic Cell, 2005, 4, 1088-1101.	3.4	21
237	Exposure of Candida albicans to antifungal agents affects expression of SAP2 and SAP9 secreted proteinase genes. Journal of Antimicrobial Chemotherapy, 2005, 55, 645-654.	1.3	97
238	Candida albicans Pmr1p, a Secretory Pathway P-type Ca2+/Mn2+-ATPase, Is Required for Glycosylation and Virulence. Journal of Biological Chemistry, 2005, 280, 23408-23415.	1.6	167
239	Multilocus Sequence Typing for Differentiation of Strains of Candida tropicalis. Journal of Clinical Microbiology, 2005, 43, 5593-5600.	1.8	134
240	Potassium homeostasis influences the locomotion and encystment of zoospores of plant pathogenic oomycetes. Fungal Genetics and Biology, 2005, 42, 213-223.	0.9	49
241	Independent regulation of chitin synthase and chitinase activity in Candida albicans and Saccharomyces cerevisiae. Microbiology (United Kingdom), 2004, 150, 921-928.	0.7	87
242	Candida albicans mutants in the BNI4 gene have reduced cell-wall chitin and alterations in morphogenesis. Microbiology (United Kingdom), 2004, 150, 3243-3252.	0.7	11
243	Ectopic Expression of URA3 Can Influence the Virulence Phenotypes and Proteome of Candida albicans but Can Be Overcome by Targeted Reintegration of URA3 at the RPS10 Locus. Eukaryotic Cell, 2004, 3, 900-909.	3.4	254
244	Loss of Cell Wall Mannosylphosphate in Candida albicans Does Not Influence Macrophage Recognition. Journal of Biological Chemistry, 2004, 279, 39628-39635.	1.6	123
245	The Candida albicans pH-regulated KER1 gene encodes a lysine/glutamic-acid-rich plasma-membrane protein that is involved in cell aggregation. Microbiology (United Kingdom), 2004, 150, 2641-2651.	0.7	6
246	Homologous recombination in Candida albicans: role of CaRad52p in DNA repair, integration of linear DNA fragments and telomere length. Molecular Microbiology, 2004, 53, 1177-1194.	1.2	56
247	New angles in mycology: studies in directional growth and directional motility. Mycological Research, 2004, 108, 5-13.	2.5	27
248	Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Molecular Microbiology, 2004, 39, 1414-1426.	1.2	130
249	GFP as a quantitative reporter of gene regulation inCandida albicans. Yeast, 2004, 21, 333-340.	0.8	113
250	Candida albicans genome sequence: a platform for genomics in the absence of genetics. Genome Biology, 2004, 5, 230.	13.9	64
251	Genetic evidence for recombination in Candida albicans based on haplotype analysis. Fungal Genetics and Biology, 2004, 41, 553-562.	0.9	71
252	The distinct morphogenic states of Candida albicans. Trends in Microbiology, 2004, 12, 317-324.	3.5	725

5

#	Article	IF	CITATIONS
253	Proteomic analysis of asexual development of Phytophthora palmivora. Mycological Research, 2003, 107, 395-400.	2.5	39
254	Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Molecular Microbiology, 2003, 47, 1637-1651.	1.2	229
255	Advances in research on oomycete root pathogens. Physiological and Molecular Plant Pathology, 2003, 62, 99-113.	1.3	125
256	CHS8—a fourth chitin synthase gene of Candida albicans contributes to in vitro chitin synthase activity, but is dispensable for growth. Fungal Genetics and Biology, 2003, 40, 146-158.	0.9	74
257	Antifungal agents: mechanisms of action. Trends in Microbiology, 2003, 11, 272-279.	3.5	965
258	EST Mining and Functional Expression Assays Identify Extracellular Effector Proteins From the Plant Pathogen Phytophthora. Genome Research, 2003, 13, 1675-1685.	2.4	333
259	Infection of chick chorioallantoic membrane (CAM) as a model for invasive hyphal growth and pathogenesis of Candida albicans. Medical Mycology, 2003, 41, 331-338.	0.3	42
260	Asynchronous Cell Cycle and Asymmetric Vacuolar Inheritance in True Hyphae of Candida albicans. Eukaryotic Cell, 2003, 2, 398-410.	3.4	75
261	Collaborative Consensus for Optimized Multilocus Sequence Typing of Candida albicans. Journal of Clinical Microbiology, 2003, 41, 5265-5266.	1.8	216
262	Optimization and Validation of Multilocus Sequence Typing for Candida albicans. Journal of Clinical Microbiology, 2003, 41, 3765-3776.	1.8	125
263	Foreword to articles on Medical Mycology. The Mycologist, 2003, 17, 49-50.	0.5	0
264	Oomycete Plant Pathogens Use Electric Fields to Target Roots. Molecular Plant-Microbe Interactions, 2002, 15, 790-798.	1.4	122
265	Candida albicans - a fungal Dr Jekyll and Mr Hyde. The Mycologist, 2002, 16, .	0.5	0
266	The zygomycetous fungus, Benjaminiella poitrasii contains a large family of differentially regulated chitin synthase genes. Fungal Genetics and Biology, 2002, 36, 215-223.	0.9	22
267	Candida albicans Switches Mates. Molecular Cell, 2002, 10, 217-218.	4.5	16
268	Fungal morphogenesis and host invasion. Current Opinion in Microbiology, 2002, 5, 366-371.	2.3	401
269	Co-operating to compete in high velocity global markets: The strategic role of flexible supply chain architectures. Journal on Chain and Network Science, 2002, 2, 19-32.	1.6	15

Signal Transduction and Morphogenesis in Candida albicans. , 2001, , 55-71.

#	Article	IF	CITATIONS
271	Survival in experimental Candida albicans infections depends on inoculum growth conditions as well as animal host. Microbiology (United Kingdom), 2000, 146, 1881-1889.	0.7	67
272	MICROBIOLOGY: Enhanced: Candida's Arranged Marriage. Science, 2000, 289, 256-257.	6.0	12
273	Regulatory networks controlling Candida albicans morphogenesis. Trends in Microbiology, 1999, 7, 333-338.	3.5	272
274	Molecular cloning and sequencing of a chitin synthase gene (CHS2) ofParacoccidioides brasiliensis. Yeast, 1998, 14, 181-187.	0.8	21
275	Molecular cloning and characterization of aCandida albicansgene coding for cytochromechaem lyase and a cell wall-related protein. Molecular Microbiology, 1998, 30, 67-81.	1.2	15
276	Candida dubliniensis: phylogeny and putative virulence factors. Microbiology (United Kingdom), 1998, 144, 829-838.	0.7	171
277	Molecular analysis of CaMnt1p, a mannosyl transferase important for adhesion and virulence of Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7670-7675.	3.3	131
278	Molecular cloning and sequencing of a chitin synthase gene (CHS2) of Paracoccidioides brasiliensis. , 1998, 14, 181.		1
279	Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology (United Kingdom), 1997, 143, 303-311.	0.7	559
280	Aspergillus fumigatus chsE:A Gene Related toCHS3ofSaccharomyces cerevisiaeand Important for Hyphal Growth and Conidiophore Development but Not Pathogenicity. Fungal Genetics and Biology, 1997, 21, 141-152.	0.9	114
281	Special Candida issue. Microbiology (United Kingdom), 1997, 143, 277-278.	0.7	1
282	A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infection and Immunity, 1997, 65, 3539-3546.	1.0	259
283	Correlation between rhodamine 123 accumulation and azole sensitivity in Candida species: possible role for drug efflux in drug resistance. Antimicrobial Agents and Chemotherapy, 1996, 40, 419-425.	1.4	105
284	The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. Journal of Bacteriology, 1996, 178, 5353-5360.	1.0	231
285	Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13217-13222.	3.3	315
286	Structure and regulation of theCandida albicans ADH1 gene encoding an immunogenic alcohol dehydrogenase. , 1996, 12, 115-127.		90
287	The Aspergillus fumigatus chsC and chsG genes encode Class III chitin synthases with different functions. Molecular Microbiology, 1996, 20, 667-679.	1.2	141
288	Budding yeast morphogenesis: signalling, cytoskeleton and cell cycle. Current Opinion in Cell Biology, 1995, 7, 845-855.	2.6	135

6

#	Article	IF	CITATIONS
289	Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Molecular Microbiology, 1994, 14, 87-99.	1.2	377
290	A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism, or virulence of Candida albicans Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 6216-6220.	3.3	144
291	Directed Growth of Fungal Hyphae in an Electric Field. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1990, 45, 306-314.	0.6	8
292	Correlation between Root-Generated Ionic Currents, pH, Fusicoccin, Indoleacetic Acid, and Growth of the Primary Root of Zea mays. Plant Physiology, 1989, 89, 1198-1206.	2.3	52
293	Changes in internal and external pH accompanying growth of Candida albicans: studies of non-dimorphic variants. Archives of Microbiology, 1989, 151, 149-153.	1.0	36
294	Correlation between profile of ion-current circulation and root development. Physiologia Plantarum, 1989, 75, 102-108.	2.6	39
295	Relationship Between Growth and the Electrical Current of Fungal Hyphae. Biological Bulletin, 1989, 176, 31-35.	0.7	17
296	Control of Extension of the Hyphal Apex. Current Topics in Medical Mycology, 1989, 3, 109-152.	0.8	22
297	Cytological Aspects of Dimorphism in <i>Candida Albicans</i> . CRC Critical Reviews in Microbiology, 1987, 15, 73-78.	4.8	49
298	Melanin, Radiation, and Energy Transduction in Fungi. , 0, , 509-514.		2
299	Fungal Diversity Revisited: 2.2 to 3.8 Million Species. , 0, , 79-95.		122
300	Necrotrophic Mycoparasites and Their Genomes. , 0, , 1005-1026.		62
301	Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi. , 0, , 687-699.		32
302	The Fungal Cell Wall: Structure, Biosynthesis, and Function. , 0, , 267-292.		65
303	Antifungal Drugs: The Current Armamentarium and Development of New Agents. , 0, , 903-922.		13
304	Stress Adaptation. , 0, , 463-485.		9
305	Fungal Sex: The <i>Ascomycota</i> ., 0, , 115-145.		4

The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi. , 0, , 727-747.

#	Article	IF	CITATIONS
307	Fungal Genomes and Insights into the Evolution of the Kingdom. , 0, , 619-633.		29
308	Biologically Active Secondary Metabolites from the Fungi. , 0, , 1087-1119.		25
309	Made for Each Other: Ascomycete Yeasts and Insects. , 0, , 945-962.		9
310	Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals. , 0, , 535-548.		2
311	Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. , 0, , 635-655.		3
312	Ploidy Variation in Fungi: Polyploidy, Aneuploidy, and Genome Evolution. , 0, , 599-618.		9
313	RNA Interference in Fungi: Retention and Loss. , 0, , 657-671.		3
314	Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience. , 0, , 787-809.		6
315	Fungal Sex: The Basidiomycota. , 0, , 147-175.		20
316	Cell Biology of Hyphal Growth. , 0, , 231-265.		15
317	Long-Distance Dispersal of Fungi. , 0, , 309-333.		27
318	The Mycelium as a Network. , 0, , 335-367.		15
319	Fungi as a Source of Food. , 0, , 1063-1085.		9
320	Sex and the Imperfect Fungi. , 0, , 193-214.		8
321	Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi. , 0, , 293-308.		14
322	Toward a Molecular Understanding of <i>Candida albicans</i> Virulence. , 0, , 305-P1.		10
323	Stress Responses in Candida. , 0, , 225-242.		3
324	Ecology of Fungal Plant Pathogens. , 0, , 387-397.		3

#	Article	IF	CITATIONS
325	Lichenized Fungi and the Evolution of Symbiotic Organization. , 0, , 749-765.		1
326	Fungal Plant Pathogenesis Mediated by Effectors. , 0, , 767-785.		1
327	Skin Fungi from Colonization to Infection. , 0, , 855-871.		6
328	The Insect Pathogens. , 0, , 923-943.		7
329	Microsporidia: Obligate Intracellular Pathogens Within the Fungal Kingdom. , 0, , 97-113.		15
330	Innate Immunity to Candida Infections. , 0, , 155-170.		0
331	A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi. , 0, , 571-597.		0
332	Antifungal Exposure and Resistance Development: Defining Minimal Selective Antifungal Concentrations and Testing Methodologies. Frontiers in Fungal Biology, 0, 3, .	0.9	8