Gabor Korchmaros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3725053/publications.pdf

Version: 2024-02-01

106	874	14	23
papers	citations	h-index	g-index
108	108	108	176
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A new family of maximal curves over a finite field. Mathematische Annalen, 2009, 343, 229-245.	1.4	83
2	On Curves Covered by the Hermitian Curve. Journal of Algebra, 1999, 216, 56-76.	0.7	40
3	New Examples of Complete k-Arcs in PG(2, q). European Journal of Combinatorics, 1983, 4, 329-334.	0.8	31
4	On $(\langle i\rangle q\langle i\rangle + \langle i\rangle t\langle i\rangle)$ -arcs of type $(0, 2, \langle i\rangle t\langle i\rangle)$ in a desarguesian plane of order $\langle i\rangle q\langle i\rangle$. Mathematical Proceedings of the Cambridge Philosophical Society, 1990, 108, 445-459.	0.4	31
5	On the Embedding of an Arc into a Conic in a Finite Plane. Finite Fields and Their Applications, 1996, 2, 274-292.	1.0	30
6	One-Factorizations of Complete Graphs with a Doubly Transitive Automorphism Group. Bulletin of the London Mathematical Society, 1993, 25, 1-6.	0.8	29
7	Quotient curves of the Suzuki curve. Acta Arithmetica, 2006, 122, 245-274.	0.4	28
8	Embedding of a Maximal Curve in a Hermitian Variety. Compositio Mathematica, 2001, 128, 95-113.	0.8	20
9	On the genus of a maximal curve. Mathematische Annalen, 2002, 323, 589-608.	1.4	20
10	Collineation Groups which are Primitive on an Oval of a Projective Plane of Odd Order. Journal of the London Mathematical Society, 1986, s2-33, 525-534.	1.0	19
11	Algebraic curves with a large non-tame automorphism group fixing no point. Transactions of the American Mathematical Society, 2010, 362, 5983-5983.	0.9	18
12	Collineation groups preserving a unital of a projective plane of odd order. Journal of Algebra, 1989, 122, 130-149.	0.7	16
13	Automorphism groups of algebraic curves with $\langle i \rangle p \langle i \rangle$ -rank zero. Journal of the London Mathematical Society, 2010, 81, 277-296.	1.0	15
14	Projective k-arcs and 2-level secret-sharing schemes. Designs, Codes, and Cryptography, 2012, 64, 3-15.	1.6	15
15	Hermitian codes from higher degree places. Journal of Pure and Applied Algebra, 2013, 217, 2371-2381.	0.6	15
16	Algebraic curves with many automorphisms. Advances in Mathematics, 2019, 349, 162-211.	1.1	14
17	Inherited arcs in finite affine planes. Journal of Combinatorial Theory - Series A, 1986, 42, 140-143.	0.8	13
18	Sharply transitive 1-factorizations of the complete graph with an invariant 1-factor. Journal of Combinatorial Designs, 1994, 2, 185-196.	0.6	13

#	Article	IF	Citations
19	A translation plane of order 49 with non-solvable collineation group. Journal of Geometry, 1985, 24, 18-30.	0.4	12
20	Blocking Sets Of External Lines To A Conic In PG(2,q), q ODD. Combinatorica, 2006, 26, 379-394.	1.2	12
21	On Quasiâ€Hermitian Varieties. Journal of Combinatorial Designs, 2012, 20, 433-447.	0.6	12
22	Collineation groups doubly transitive on the points at infinity in an affine plane of order (2 r). Archiv Der Mathematik, $1981, 37, 572-576$.	0.5	11
23	Ovals in commutative semifield planes. Archiv Der Mathematik, 1997, 69, 259-264.	0.5	11
24	Unitals in Finite Desarguesian Planes. Journal of Algebraic Combinatorics, 2001, 14, 119-125.	0.8	11
25	On the structure of 3-nets embedded in a projective plane. Journal of Combinatorial Theory - Series A, 2011, 118, 1228-1238.	0.8	11
26	3-Nets realizing a group in a projective plane. Journal of Algebraic Combinatorics, 2014, 39, 939-966.	0.8	11
27	Classification of maximal caps in PG(3,5) different from elliptic quadrics. Journal of Geometry, 1996, 57, 9-19.	0.4	10
28	Complete arcs arising from conics. Discrete Mathematics, 2003, 267, 181-187.	0.7	10
29	On automorphism groups of certain Goppa codes. Designs, Codes, and Cryptography, 2008, 47, 177-190.	1.6	10
30	Curves covered by the Hermitian curve. Finite Fields and Their Applications, 2006, 12, 539-564.	1.0	9
31	k-nets embedded in a projective plane over a field. Combinatorica, 2015, 35, 63-74.	1.2	9
32	Collineation groups preserving a unital in a projective plane of even order. Geometriae Dedicata, 1989, 31, 333.	0.3	8
33	Blocking sets of nonsecant lines to a conic inPG(2,q),q odd. Journal of Combinatorial Designs, 2005, 13, 292-301.	0.6	8
34	On the intersection pattern of a unital and an oval in <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">PG</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:msup><mml:mi>q</mml:mi></mml:msup></mml:math>	1.0 > <mml:mn></mml:mn>	8 ·2·
35	Infinite family of large complete arcs in PG(2, q n), with q odd and n > 1 odd. Designs, Codes, and Cryptography, 2010, 55, 285-296.	1.6	8
36	Transitive A 6-invariant k-arcs in PG(2, q). Designs, Codes, and Cryptography, 2013, 68, 73-79.	1.6	8

#	Article	IF	Citations
37	Hemisystems of the Hermitian surface. Journal of Combinatorial Theory - Series A, 2019, 165, 408-439.	0.8	8
38	A combinatorial characterization of the dihedral subgroups of order $2(p\ r+1)$ of PGL $(2,p\ r)$. Geometriae Dedicata, 1980, 9, 381.	0.3	7
39	n2-sets in a projective plane which determine exactly n2+n lines. Journal of Geometry, 1980, 15, 175-181.	0.4	7
40	Example of a chain of circles on an elliptic quadric of PG(3, q), q = 7, 11. Journal of Combinatorial Theory - Series A, 1981, 31, 98-100.	0.8	7
41	Note on (q+2)-Sets in A Galois Plane of Order q. North-Holland Mathematics Studies, 1982, 63, 117-121.	0.2	7
42	Hyperovals with a transitive collineation group. Geometriae Dedicata, 1987, 24, 269.	0.3	7
43	Collineation groups preserving an oval in a projective place of odd order. Journal of the Australian Mathematical Society Series A Pure Mathematics and Statistics, 1990, 48, 156-170.	0.3	7
44	Flocks of hyperbolic quadrics and linear groups containing homologies. Geometriae Dedicata, 1992, 42, 295-309.	0.3	7
45	Fermat Curves over Finite Fields and Cyclic Subsets in High-Dimensional Projective Spaces. Finite Fields and Their Applications, 1999, 5, 206-217.	1.0	7
46	1-Factorizations of Complete Multigraphs Arising from Finite Geometry. Journal of Combinatorial Theory - Series A, 2001, 93, 385-390.	0.8	7
47	Collineation Groups Strongly Irreducible on an Oval. North-Holland Mathematics Studies, 1986, 123, 85-97.	0.2	6
48	Some finite translation planes arising from A6-1nvariant ovoids of the Klein quadric. Journal of Geometry, 1990, 37, 29-47.	0.4	6
49	I-Transitive Ovals in Projective Planes of Odd Order. Journal of Algebra, 1998, 208, 604-618.	0.7	6
50	Lower bounds on the minimum distance in Hermitian one-point differential codes. Science China Mathematics, 2013, 56, 1449-1455.	1.7	6
51	A characterization of the Artin–Mumford curve. Journal of Number Theory, 2015, 154, 278-291.	0.4	6
52	On the Dickson–Guralnick–Zieve curve. Journal of Number Theory, 2019, 196, 114-138.	0.4	6
53	Ordinary algebraic curves with many automorphisms in positive characteristic. Algebra and Number Theory, 2019, 13, 1-18.	0.6	6
54	On n2 -sets of type (0,1,n) in projective planes. Journal of Geometry, 1980, 15, 170-174.	0.4	5

#	Article	IF	Citations
55	Translation Planes of Order 112. North-Holland Mathematics Studies, 1982, 63, 249-264.	0.2	5
56	Transitive parabolic unitals in translation planes of odd order. Discrete Mathematics, 2001, 231, 3-10.	0.7	5
57	Ovoids of the Hermitian surface in odd characteristic. Advances in Geometry, 2003, 3, 49-58.	0.4	5
58	Algebraic curves and maximal arcs. Journal of Algebraic Combinatorics, 2008, 28, 531-544.	0.8	5
59	42-arcs in PG(2, q) left invariant by PSL(2, 7). Designs, Codes, and Cryptography, 2012, 64, 33-46.	1.6	5
60	Large p-groups of automorphisms of algebraic curves in characteristic p. Journal of Algebra, 2017, 481, 215-249.	0.7	5
61	Codes and Gap Sequences of Hermitian Curves. IEEE Transactions on Information Theory, 2020, 66, 3547-3554.	2.4	5
62	On the action of PSU (3,q 2) on an affine plane of orderq 3. Archiv Der Mathematik, 1985, 44, 379-384.	0.5	4
63	A Characterization of the Sharply 3-transitive Finite Permutation Groups. European Journal of Combinatorics, 1990, 11, 213-228.	0.8	4
64	Blocking sets which are preserved by transitive collineation groups. Forum Mathematicum, 1992, 4, .	0.7	4
65	Nuclei of point sets of sizeq+1 contained in the union of two lines inPG(2,q). Combinatorica, 1994, 14, 63-69.	1.2	4
66	Multiple blocking sets and multisets in Desarguesian planes. Designs, Codes, and Cryptography, 2010, 56, 177-181.	1.6	4
67	Large 2-groups of automorphisms of algebraic curves over a field of characteristic 2. Journal of Algebra, 2015, 427, 264-294.	0.7	4
68	Embedding of classical polar unitals in PG(2,q2). Journal of Combinatorial Theory - Series A, 2018, 153, 67-75.	0.8	4
69	Transcendence degree one function fields over a finite field with many automorphisms. Journal of Pure and Applied Algebra, 2018, 222, 1810-1826.	0.6	4
70	A translation plane of order 25. Journal of Geometry, 1984, 22, 108-116.	0.4	3
71	The structure of a collineation group preserving an oval in a projective plane of odd order. Geometriae Dedicata, 1995, 57, 73-89.	0.3	3
72	Title is missing!. Designs, Codes, and Cryptography, 1997, 10, 109-114.	1.6	3

#	Article	IF	Citations
73	On arcs sharing the maximum number of points with ovals in cyclic affine planes of odd order. Journal of Combinatorial Designs, 2010, 18, 25-47.	0.6	3
74	Finite Bolyai–Lobachevskii planes. Acta Mathematica Hungarica, 2012, 134, 405-415.	0.5	3
75	Hermitian codes with automorphism group isomorphic to PGL(2,q) with q odd. Finite Fields and Their Applications, 2017, 44, 1-17.	1.0	3
76	One-factorisations of complete graphs arising from ovals in finite planes. Journal of Combinatorial Theory - Series A, 2018, 160, 62-83.	0.8	3
77	Multilevel secret sharing schemes arising from the normal rational curve. Discrete Applied Mathematics, 2020, 284, 158-165.	0.9	3
78	The geometry of the Artin-Schreier-Mumford curves over an algebraically closed field. Acta Scientiarum Mathematicarum, 2017, 83, 673-681.	0.4	3
79	On egglike inversive planes. Journal of Geometry, 1983, 21, 53-58.	0.4	2
80	Commutative loops of exponent two and involutorial 3-nets with identity. Geometriae Dedicata, 1988, 28, 259.	0.3	2
81	Projective planes with non-abelian simple collineation group fixing an oval. Archiv Der Mathematik, 1993, 60, 300-304.	0.5	2
82	Una generalizzazione di un teorema di B. Segre sui punti regolari rispetto ad una ellisse di un piano affine di Galois. Annali Di Matematica Pura Ed Applicata, 1997, 172, 87-102.	1.0	2
83	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/	0.7	2
84	xmins:so="http://www.elsevier.com/xmi/common/struct-bio/dtd" xmlns:ce="http://www.elsevier.com/x Arcs in AG(2, q) determining few directions. Designs, Codes, and Cryptography, 2013, 68, 61-72.	1.6	2
85	Garden of curves with many automorphisms. , 2014, , 93-120.		2
86	Classification of <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math> -nets. European Journal of Combinatorics, 2015, 48, 177-185.	0.8	2
87	Large odd prime power order automorphism groups of algebraic curves in any characteristic. Journal of Algebra, 2020, 547, 312-344.	0.7	2
88	Inherited unitals in Moulton planes. Ars Mathematica Contemporanea, 2018, 14, 251-265.	0.6	2
89	Embedding of orthogonal Buekenhout-Metz unitals in the Desarguesian plane of order q^2. Ars Mathematica Contemporanea, 2019, 16, 609-623.	0.6	2
90	2-transitive abstract ovals of odd order. Aequationes Mathematicae, 1987, 33, 208-219.	0.8	1

#	Article	IF	CITATIONS
91	Irreducible collineation groups fixing an oval. Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg, 1999, 69, 259-264.	0.2	1
92	Irreducible collineation groups fixing aÂhyperoval. Journal of Algebra, 2002, 252, 431-448.	0.7	1
93	Hyperbolic Ovals in Finite Planes. Designs, Codes, and Cryptography, 2004, 32, 239-249.	1.6	1
94	On cyclic semi-regular subgroups of certain 2-transitive permutation groups. Discrete Mathematics, 2010, 310, 3058-3066.	0.7	1
95	Problems and results in. Electronic Notes in Discrete Mathematics, 2013, 40, 181-187.	0.4	1
96	Coset intersection of irreducible plane cubics. Designs, Codes, and Cryptography, 2014, 72, 53-75.	1.6	1
97	Group-labeled light dual multinets in the projective plane. Discrete Mathematics, 2018, 341, 2121-2130.	0.7	1
98	Desargues Configurations Inscribed in an Oval. North-Holland Mathematics Studies, 1982, 63, 207-209.	0.2	0
99	Moufang loops of odd prime exponent p and a class of linear spaces of order p. Journal of Combinatorial Theory - Series A, 1982, 32, 336-349.	0.8	0
100	Aldo Cossu's Work in Finite Geometry. Mediterranean Journal of Mathematics, 2006, 3, 349-361.	0.8	0
101	Irreducible collineation groups with two orbits forming an oval. Journal of Combinatorial Theory - Series A, 2007, 114, 1470-1480.	0.8	0
102	Nakajima's remark on Henn's proof. Electronic Notes in Discrete Mathematics, 2013, 40, 135-138.	0.4	0
103	Regular polygons in higher dimensional Euclidean spaces. Journal of Geometry, 2014, 105, 43-55.	0.4	0
104	3-Nets realizing a diassociative loop in a projective plane. Designs, Codes, and Cryptography, 2016, 79, 443-449.	1.6	0
105	Curves with more than one inner Galois point. Journal of Algebra, 2021, 566, 374-404.	0.7	0
106	Classification of k-nets embedded in a plane. , 2013, , 277-281.		0