Zhou-Jing Wang, Zhoujing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/372505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights. Information Sciences, 2009, 179, 3026-3040.	6.9	279
2	Derivation of intuitionistic fuzzy weights based on intuitionistic fuzzy preference relations. Applied Mathematical Modelling, 2013, 37, 6377-6388.	4.2	130
3	Pricing decisions in closed-loop supply chains with marketing effort and fairness concerns. International Journal of Production Research, 2017, 55, 6710-6731.	7.5	115
4	Goal programming approaches to deriving interval weights based on interval fuzzy preference relations. Information Sciences, 2012, 193, 180-198.	6.9	113
5	A mathematical programming approach to multi-attribute decision making with interval-valued intuitionistic fuzzy assessment information. Expert Systems With Applications, 2011, 38, 12462-12469.	7.6	73
6	An interval-valued intuitionistic fuzzy multiattribute group decision making framework with incomplete preference over alternatives. Expert Systems With Applications, 2012, 39, 13509-13516.	7.6	69
7	Acceptability analysis and priority weight elicitation for interval multiplicative comparison matrices. European Journal of Operational Research, 2016, 250, 628-638.	5.7	65
8	Consistency analysis and priority derivation of triangular fuzzy preference relations based on modal value and geometric mean. Information Sciences, 2015, 314, 169-183.	6.9	62
9	A multi-step goal programming approach for group decision making with incomplete interval additive reciprocal comparison matrices. European Journal of Operational Research, 2015, 242, 890-900.	5.7	58
10	A heuristic for the container loading problem: A tertiary-tree-based dynamic space decomposition approach. European Journal of Operational Research, 2008, 191, 86-99.	5.7	54
11	A note on "A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making― European Journal of Operational Research, 2015, 247, 867-871.	5.7	53
12	A hybrid multi-verse optimization for the fuzzy flexible job-shop scheduling problem. Computers and Industrial Engineering, 2019, 127, 1089-1100.	6.3	50
13	Multi-area economic dispatch using an improved stochastic fractal search algorithm. Energy, 2019, 166, 47-58.	8.8	42
14	A decomposition-based multi-objective genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem. Knowledge-Based Systems, 2021, 225, 107099.	7.1	39
15	Consistency analysis and group decision making based on triangular fuzzy additive reciprocal preference relations. Information Sciences, 2016, 361-362, 29-47.	6.9	37
16	Logarithmic least squares prioritization and completion methods for interval fuzzy preference relations based on geometric transitivity. Information Sciences, 2014, 289, 59-75.	6.9	34
17	And-like-uninorm-based transitivity and analytic hierarchy process with interval-valued fuzzy preference relations. Information Sciences, 2020, 539, 375-396.	6.9	30
18	A discrete oppositional multi-verse optimization algorithm for multi-skill resource constrained project scheduling problem. Applied Soft Computing Journal, 2019, 85, 105805.	7.2	28

#	Article	IF	CITATIONS
19	Axiomatic property based consistency analysis and decision making with interval multiplicative reciprocal preference relations. Information Sciences, 2019, 491, 109-137.	6.9	27
20	A Representable Uninorm-Based Intuitionistic Fuzzy Analytic Hierarchy Process. IEEE Transactions on Fuzzy Systems, 2020, 28, 2555-2569.	9.8	26
21	A Goal-Programming-Based Heuristic Approach to Deriving Fuzzy Weights in Analytic Form from Triangular Fuzzy Preference Relations. IEEE Transactions on Fuzzy Systems, 2019, 27, 234-248.	9.8	25
22	A goal programming approach to deriving interval weights in analytic form from interval Fuzzy preference relations based on multiplicative consistency. Information Sciences, 2018, 462, 160-181.	6.9	22
23	A note on "Incomplete interval fuzzy preference relations and their applications― Computers and Industrial Engineering, 2014, 77, 65-69.	6.3	21
24	Geometric consistency based interval weight elicitation from intuitionistic preference relations using logarithmic least square optimization. Fuzzy Optimization and Decision Making, 2015, 14, 289-310.	5.5	21
25	Parameter identification for fractional-order chaotic systems using a hybrid stochastic fractal search algorithm. Nonlinear Dynamics, 2017, 90, 1243-1255.	5.2	21
26	Linguistic Multi-Attribute Group Decision Making with Risk Preferences and Its Use in Low-Carbon Tourism Destination Selection. International Journal of Environmental Research and Public Health, 2017, 14, 1078.	2.6	21
27	Group decision making with incomplete intuitionistic preference relations based on quadratic programming models. Computers and Industrial Engineering, 2016, 93, 162-170.	6.3	20
28	A Novel Triangular Fuzzy Analytic Hierarchy Process. IEEE Transactions on Fuzzy Systems, 2021, 29, 2032-2046.	9.8	20
29	Consistency and optimized priority weight analytical solutions of interval multiplicative preference relations. Information Sciences, 2019, 482, 105-122.	6.9	18
30	A Group Decision Framework with Intuitionistic Preference Relations and Its Application to Low Carbon Supplier Selection. International Journal of Environmental Research and Public Health, 2016, 13, 923.	2.6	17
31	Ratio-based similarity analysis and consensus building for group decision making with interval reciprocal preference relations. Applied Soft Computing Journal, 2016, 42, 260-275.	7.2	17
32	Acceptability measurement and priority weight elicitation of triangular fuzzy multiplicative preference relations based on geometric consistency and uncertainty indices. Information Sciences, 2017, 402, 105-123.	6.9	15
33	Multi-skill resource constrained project scheduling using a multi-objective discrete Jaya algorithm. Applied Intelligence, 2022, 52, 5718-5738.	5.3	15
34	Medical Waste Disposal Method Selection Based on a Hierarchical Decision Model with Intuitionistic Fuzzy Relations. International Journal of Environmental Research and Public Health, 2016, 13, 896.	2.6	14
35	Uncertainty index based consistency measurement and priority generation with interval probabilities in the analytic hierarchy process. Computers and Industrial Engineering, 2015, 83, 252-260.	6.3	13
36	A vague-set-based fuzzy multi-objective decision making model for bidding purchase. Journal of Zhejiang University: Science A, 2007, 8, 644-650.	2.4	11

#	Article	IF	CITATIONS
37	An Acceptable Consistency-Based Framework for Group Decision Making with Intuitionistic Preference Relations. Group Decision and Negotiation, 2016, 25, 181-202.	3.3	10
38	An Approach to Multi-attribute Interval-Valued Intuitionistic Fuzzy Decision Making with Incomplete Weight Information. , 2008, , .		9
39	A two-stage linear goal programming approach to eliciting interval weights from additive interval fuzzy preference relations. Soft Computing, 2016, 20, 2721-2732.	3.6	9
40	Comments on "A group decision-making model with interval multiplicative reciprocal matrices based on the geometric consistency index― Computers and Industrial Engineering, 2018, 117, 131-137.	6.3	9
41	A note on "A group decision making model based on a generalized ordered weighted geometric average operator with interval preference matricesâ€. Fuzzy Sets and Systems, 2018, 341, 145-153.	2.7	9
42	Intuitionistic Fuzzy Hierarchical Multi-Criteria Decision Making for Evaluating Performances of Low-Carbon Tourism Scenic Spots. International Journal of Environmental Research and Public Health, 2020, 17, 6259.	2.6	9
43	Additive consistency analysis and normalized optimal utility vector derivation for triangular fuzzy additive reciprocal preference relations. Information Sciences, 2022, 608, 339-361.	6.9	8
44	Prioritization and Aggregation of Intuitionistic Preference Relations: A Multiplicative-Transitivity-Based Transformation from Intuitionistic Judgment Data to Priority Weights. Group Decision and Negotiation, 2017, 26, 409-436.	3.3	7
45	Selecting Cooking Methods to Decrease Persistent Organic Pollutant Concentrations in Food of Animal Origin Using a Consensus Decision-Making Model. International Journal of Environmental Research and Public Health, 2017, 14, 187.	2.6	7
46	Fuzzy Group Consensus Decision Making and Its Use in Selecting Energy-Saving and Low-carbon Technology Schemes in Star Hotels. International Journal of Environmental Research and Public Health, 2018, 15, 2057.	2.6	7
47	An axiomatic property based triangular fuzzy extension of Saaty's consistency. Computers and Industrial Engineering, 2019, 137, 106086.	6.3	7
48	Eigenproblem driven triangular fuzzy analytic hierarchy process. Information Sciences, 2021, 578, 795-816.	6.9	7
49	New additive consistency framework and utility derivation for interval fuzzy reciprocal preference relations. Journal of the Operational Research Society, 2022, 73, 2572-2590.	3.4	7
50	Notes on "Multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment― Journal of Systems Science and Systems Engineering, 2010, 19, 504-508.	1.6	6
51	Comments on "A note on "Applying fuzzy linguistic preference relations to the improvement of consistency of fuzzy AHPâ€â€‰â€• Information Sciences, 2016, 372, 539-545.	6.9	6
52	A two-stage acceptable hesitancy based goal programming framework to evaluating missing values of incomplete intuitionistic reciprocal preference relations. Computers and Industrial Engineering, 2017, 105, 190-200.	6.3	6
53	And-like-uninorm based consistency analysis and optimized fuzzy weight closed-form solution of triangular fuzzy additive preference relations. Information Sciences, 2020, 516, 429-452.	6.9	6
54	Eigenvector driven interval priority derivation and acceptability checking for interval multiplicative pairwise comparison matrices. Computers and Industrial Engineering, 2021, 156, 107215.	6.3	6

#	Article	IF	CITATIONS
55	Approaches to improving consistency of interval fuzzy preference relations. Journal of Systems Science and Systems Engineering, 2014, 23, 460-479.	1.6	4
56	Minimum adjustment cost-based multi-stage goal programming models for consistency improving and consensus building with multiplicative reciprocal paired comparison matrices. Journal of the Operational Research Society, 2022, 73, 2151-2167.	3.4	4
57	Layer-layout-based heuristics for loading homogeneous items into a single container. Journal of Zhejiang University: Science A, 2007, 8, 1944-1952.	2.4	3
58	A goal programming method for generating priority weights based on interval-valued intuitionistic preference relations. , 2009, , .		3
59	A Decision Making Model Based on Intuitionistic Multiplicative Preference Relations With Acceptable Consistency. IEEE Access, 2019, 7, 109195-109207.	4.2	3
60	A goal programming based heuristic method to obtaining interval weights in analytic form from interval multiplicative comparison matrices. Computers and Industrial Engineering, 2019, 128, 313-324.	6.3	2
61	A Note on "A New Method for Triangular Fuzzy Compare Wise Judgment Matrix Process Based on Consistency Analysis― International Journal of Fuzzy Systems, 2019, 21, 2318-2325.	4.0	1
62	An approach to deriving interval weights from interval fuzzy preference relations based on multiplicative transitivity. , 2014, , .		0
63	Optimal service policy in the presence of demand referral and online word-of-mouth. , 2014, , .		0
64	An approach to aggregating interval weights for hierarchical multiple criteria decision making. , 2014, , ,		0
65	Geometric Least Square Models for Deriving <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mo stretchy="false">[<mml:mn>0,1</mml:mn><mml:mo< td=""><td>1.1</td><td>Ο</td></mml:mo<></mml:mo </mmi:math 	1.1	Ο