
Olga E Eremina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3724998/publications.pdf Version: 2024-02-01

OLCA E EDEMINA

#	Article	IF	CITATIONS
1	Ultrasensitive and multiplex SERS determination of anthropogenic phenols in oil fuel and environmental samples. Environmental Science: Nano, 2022, 9, 964-974.	4.3	4
2	Plasmonic features of free-standing chitosan nanocomposite film with silver and graphene oxide for SERS applications. Nanotechnology, 2022, 33, 335501.	2.6	6
3	Molecular Immobilization and Resonant Raman Amplification by Complex-Loaded Enhancers (MIRRACLE) on copper (II)–chitosan–modified SERS-active metallic nanostructured substrates for multiplex determination of dopamine, norepinephrine, and epinephrine. Mikrochimica Acta, 2022, 189, 211.	5.0	8
4	DFT-Guided Development of Raman Nanoparticle-Based Contrast Agents for High-Content Imaging. , 2022, , .		0
5	Expanding the Multiplexing Capabilities of Raman Imaging to Reveal Highly Specific Molecular Expression and Enable Spatial Profiling. ACS Nano, 2022, 16, 10341-10353.	14.6	27
6	A colorful approach towards developing new nano-based imaging contrast agents for improved cancer detection. Biomaterials Science, 2021, 9, 482-495.	5.4	12
7	Dual-Purpose SERS Sensor for Selective Determination of Polycyclic Aromatic Compounds <i>via</i> Electron Donor–Acceptor Traps. ACS Sensors, 2021, 6, 1057-1066.	7.8	19
8	Capturing polycyclic aromatic sulfur heterocycles in electron donor–acceptor complexes. Mendeleev Communications, 2021, 31, 326-329.	1.6	1
9	Capturing polycyclic aromatic sulfur heterocycles in electron donor–acceptor complexes. Mendeleev Communications, 2021, 31, 326-329.	1.6	1
10	Selecting Surface-Enhanced Raman Spectroscopy Flavors for Multiplexed Imaging Applications: Beyond the Experiment. Journal of Physical Chemistry Letters, 2021, 12, 5564-5570.	4.6	9
11	Fluorometric and SERS Sensor Systems for Diagnostics and Monitoring of Catecholamine-Dependent Diseases. , 2021, , 133-160.		0
12	DNA detection by dye labeled oligonucleotides using surface enhanced Raman spectroscopy. Mendeleev Communications, 2020, 30, 18-21.	1.6	9
13	Silver-chitosan nanocomposite as a plasmonic platform for SERS sensing of polyaromatic sulfur heterocycles in oil fuel. Nanotechnology, 2020, 31, 225503.	2.6	15
14	Optically transparent chitosan hydrogels for selective sorption and fluorometric determination of dibenzothiophenes. Carbohydrate Polymers, 2019, 216, 260-269.	10.2	14
15	Promising methods for noninvasive medical diagnosis based on the use of nanoparticles: surface-enhanced raman spectroscopy in the study of cells, cell organelles and neurotransmitter metabolism markers. Bulletin of Russian State Medical University, 2019, , 57-67.	0.2	1
16	Surface-enhanced Raman spectroscopy in modern chemical analysis: advances and prospects. Russian Chemical Reviews, 2018, 87, 741-770.	6.5	40
17	18F-Labelled catecholamine type radiopharmaceuticals in the diagnosis of neurodegenerative diseases and neuroendocrine tumours: approaches to synthesis and development prospects. Russian Chemical Reviews, 2018, 87, 350-373.	6.5	12
18	Novel Multilayer Nanostructured Materials for Recognition of Polycyclic Aromatic Sulfur Pollutants and Express Analysis of Fuel Quality and Environmental Health by Surface Enhanced Raman Spectroscopy. ACS Applied Materials & Interfaces, 2017, 9, 15058-15067.	8.0	24

Olga E Eremina

#	Article	IF	CITATIONS
19	Bioprotective polymer layers for surface-enhanced Raman spectroscopy of proteins. Materials Technology, 2017, 32, 881-887.	3.0	9
20	SERS in biology/biomedical SERS: general discussion. Faraday Discussions, 2017, 205, 429-456.	3.2	22
21	Analytical SERS: general discussion. Faraday Discussions, 2017, 205, 561-600.	3.2	14
22	Methods for determining neurotransmitter metabolism markers for clinical diagnostics. Journal of Analytical Chemistry, 2016, 71, 1155-1168.	0.9	18
23	Chimie douce preparation of reproducible silver coatings for SERS applications. Functional Materials Letters, 2016, 09, 1650016.	1.2	11
24	Polymer-coated substrates for surface enhanced Raman spectroscopy. Mendeleev Communications, 2015, 25, 460-462.	1.6	13
25	Entrapment into charge transfer complexes for resonant Raman scattering enhancement. Chemical Communications. 2014. 50. 6468.	4.1	29