Valeriy V Ginzburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3724543/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling the Glass Transition of Free-Standing Polymer Thin Films Using the "SL-TS2―Mean-Field Approach. Macromolecules, 2022, 55, 873-882.	2.2	7
2	Associative thickeners for waterborne paints: Structure, characterization, rheology, and modeling. Progress in Polymer Science, 2022, 129, 101546.	11.8	22
3	Combined description of polymer <i>PVT</i> and relaxation data using a dynamic "SL-TS2―mean-field lattice model. Soft Matter, 2021, 17, 9094-9106.	1.2	7
4	Modeling the Glass Transition and Glassy Dynamics of Random Copolymers Using the TS2 Mean-Field Approach. Macromolecules, 2021, 54, 2774-2782.	2.2	8
5	Nonelectrostatic Adsorption of Polyelectrolytes and Mediated Interactions between Solid Surfaces. Langmuir, 2021, 37, 5483-5493.	1.6	8
6	Nanocomposites Based on Coil-Comb Diblock Copolymers. Macromolecules, 2021, 54, 1006-1016.	2.2	14
7	Density Functional Theory-Based Modeling of Polymer Nanocomposites. Springer Series in Materials Science, 2021, , 23-44.	0.4	1
8	Modeling the Thermal Conductivity of Polymer-Inorganic Nanocomposites. Springer Series in Materials Science, 2021, , 235-257.	0.4	1
9	A simple mean-field model of glassy dynamics and glass transition. Soft Matter, 2020, 16, 810-825.	1.2	18
10	Recent Developments in Theory and Modeling of Polymer-Based Nanocomposites. Advanced Structured Materials, 2019, , 205-224.	0.3	6
11	Influence of the first normal stress differences on model hydrophobically modified ethoxylated urethane-thickened waterborne paints brush drag. Progress in Organic Coatings, 2019, 135, 582-590.	1.9	5
12	On the origin of oscillatory interactions between surfaces mediated by polyelectrolyte solution. Journal of Chemical Physics, 2019, 151, 214901.	1.2	12
13	Rheology of Cellulose Ether Excipients Designed for Hot Melt Extrusion. Biomacromolecules, 2018, 19, 4430-4441.	2.6	7
14	Oscillatory and Steady Shear Rheology of Model Hydrophobically Modified Ethoxylated Urethane-Thickened Waterborne Paints. Langmuir, 2018, 34, 10993-11002.	1.6	19
15	Density functional theory for charged fluids. Soft Matter, 2018, 14, 5878-5887.	1.2	28
16	Formulation-Controlled Positive and Negative First Normal Stress Differences in Waterborne Hydrophobically Modified Ethylene Oxide Urethane (HEUR)-Latex Suspensions. ACS Macro Letters, 2017, 6, 716-720.	2.3	13
17	Modeling the Morphology and Phase Behavior of One-Component Polymer-Grafted Nanoparticle Systems. Macromolecules, 2017, 50, 9445-9455.	2.2	37
18	Anisotropic selfâ€assembly and gelation in aqueous methylcellulose—theory and modeling. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1624-1636.	2.4	36

VALERIY V GINZBURG

#	Article	IF	CITATIONS
19	Designing Block Copolymers for Nanolithography using Mesoscale Modeling: Line-Space Graphoepitaxy. MRS Advances, 2016, 1, 1829-1839.	0.5	0
20	Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 2016, 59, 41-85.	11.8	1,464
21	Computational modeling of blockâ€copolymer directed selfâ€assembly. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 90-95.	2.4	16
22	Design, polymerization, and properties of polyurethane elastomers from miscible, immiscible, and hybridized seedâ€oil derived soft segment blends. Journal of Polymer Science Part A, 2015, 53, 93-102.	2.5	9
23	Shear-Dependent Interactions in Hydrophobically Modified Ethylene Oxide Urethane (HEUR) Based Coatings: Mesoscale Structure and Viscosity. Macromolecules, 2015, 48, 1866-1882.	2.2	29
24	Modeling the Adsorption of Rheology Modifiers onto Latex Particles Using Coarse-Grained Molecular Dynamics (CG-MD) and Self-Consistent Field Theory (SCFT). Macromolecules, 2015, 48, 8045-8054.	2.2	22
25	New materials for directed self-assembly for advanced patterning. Proceedings of SPIE, 2014, , .	0.8	6
26	Characterization of polyurethane hard segment length distribution using soft hydrolysis/MALDI and Monte Carlo simulation. Polymer, 2013, 54, 5005-5015.	1.8	21
27	Design, polymerization, and properties of high performance thermoplastic polyurethane elastomers from seed-oil derived soft segments. Polymer, 2013, 54, 1350-1360.	1.8	52
28	Polymer-Grafted Nanoparticles in Polymer Melts: Modeling Using the Combined SCFT–DFT Approach. Macromolecules, 2013, 46, 9798-9805.	2.2	42
29	Combining physical resist modeling and self-consistent field theory for pattern simulation in directed self-assembly. Proceedings of SPIE, 2013, , .	0.8	5
30	Modeling Chemoepitaxy of Block Copolymer Thin Films using Self-Consistent Field Theory. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 817-823.	0.1	14
31	Modeling the Interfacial Tension in Oilâ^'Waterâ^'Nonionic Surfactant Mixtures Using Dissipative Particle Dynamics and Self-Consistent Field Theory. Journal of Physical Chemistry B, 2011, 115, 4654-4661.	1.2	69
32	Application of Mesoscale Field-Based Models to Predict Stability of Particle Dispersions in Polymer Melts. Advances in Chemical Engineering, 2010, 39, 131-164.	0.5	3
33	Thermodynamics of Polymerâ~'Clay Nanocomposites Revisited: Compressible Self-Consistent Field Theory Modeling of Melt-Intercalated Organoclays. Macromolecules, 2009, 42, 9089-9095.	2.2	23
34	Modeling polymer-induced interactions between two grafted surfaces: Comparison between interfacial statistical associating fluid theory and self-consistent field theory. Journal of Chemical Physics, 2009, 131, 044908.	1.2	39
35	Modeling the Thermodynamics of the Interaction of Nanoparticles with Cell Membranes. Nano Letters, 2007, 7, 3716-3722.	4.5	234
36	Theoretical modeling of the relationship between Young's modulus and formulation variables for segmented polyurethanes. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2123-2135.	2.4	41

VALERIY V GINZBURG

#	Article	IF	CITATIONS
37	High-Dielectric-Constant Self-Assembled Nodular Structures in Polymer/Gold Nanoparticle Films. Macromolecules, 2006, 39, 3901-3906.	2.2	29
38	Determining the phase behavior of nanoparticle-filled binary blends. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2389-2403.	2.4	64
39	Influence of Nanoparticles on Miscibility of Polymer Blends. A Simple Theory. Macromolecules, 2005, 38, 2362-2367.	2.2	225
40	Effect of hydrodynamic interactions on the evolution of chemically reactive ternary mixtures. Journal of Chemical Physics, 2004, 121, 6052-6063.	1.2	22
41	Polymer Modeling at The Dow Chemical Company. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2004, 44, 53-85.	2.2	12
42	Multicomponent Materials as Li+ Conductors. Materials Research Society Symposia Proceedings, 2004, 856, BB12.5.1.	0.1	0
43	Modeling reactive compatibilization of a binary blend with interacting particles. Journal of Chemical Physics, 2003, 118, 9044-9052.	1.2	12
44	Block Copolymer-Directed Assembly of Nanoparticles:Â Forming Mesoscopically Ordered Hybrid Materials. Macromolecules, 2002, 35, 1060-1071.	2.2	279
45	Three-dimensional simulations of diblock copolymer/particle composites. Polymer, 2002, 43, 461-466.	1.8	47
46	Simple "Kink―Model of Melt Intercalation in Polymer-Clay Nanocomposites. Physical Review Letters, 2001, 86, 5073-5075.	2.9	36
47	Predicting the Phase Behavior of Polymer-Clay Nanocomposites: The Role of End-Functionalized Chains. ACS Symposium Series, 2001, , 57-70.	0.5	2
48	Predicting the Mesophases of Copolymer-Nanoparticle Composites. Science, 2001, 292, 2469-2472.	6.0	701
49	Spinodal decomposition of a binary fluid with fixed impurities. Journal of Chemical Physics, 2001, 115, 3779-3784.	1.2	39
50	Thermodynamic Behavior of Particle/Diblock Copolymer Mixtures:Â Simulation and Theory. Macromolecules, 2000, 33, 8085-8096.	2.2	250
51	Forming Supramolecular Networks from Nanoscale Rods in Binary, Phase-Separating Mixtures. Science, 2000, 288, 1802-1804.	6.0	152
52	Modeling the Dynamic Behavior of Diblock Copolymer/Particle Composites. Macromolecules, 2000, 33, 6140-6147.	2.2	61
53	Theoretical Phase Diagrams of Polymer/Clay Composites:Â The Role of Grafted Organic Modifiers. Macromolecules, 2000, 33, 1089-1099.	2.2	187
54	Multi-Scale Model for Binary Mixtures Containing Nanoscopic Particles. Journal of Physical Chemistry B, 2000, 104, 3411-3422.	1.2	139

4

VALERIY V GINZBURG

#	Article	IF	CITATIONS
55	Phase Separation under Shear of Binary Mixtures Containing Hard Particles. Langmuir, 1999, 15, 4952-4956.	1.6	25
56	Calculating Phase Diagrams of Polymerâ^'Platelet Mixtures Using Density Functional Theory:Â Implications for Polymer/Clay Composites. Macromolecules, 1999, 32, 5681-5688.	2.2	124
57	Simulation of Hard Particles in a Phase-Separating Binary Mixture. Physical Review Letters, 1999, 82, 4026-4029.	2.9	126
58	Kinetic model of phase separation in binary mixtures with hard mobile impurities. Physical Review E, 1999, 60, 4352-4359.	0.8	58
59	Calculating Phase Diagrams of Polymer-Clay Mixtures by Combining Density Functional and Self-Consistent Field Theory. Materials Research Society Symposia Proceedings, 1999, 576, 143.	0.1	0
60	Phenomenological description of the crystal-liquid crystal phase diagram. Liquid Crystals, 1998, 25, 621-630.	0.9	0
61	Self-consistent model of an annihilation-diffusion reaction with long-range interactions. Physical Review E, 1997, 55, 395-402.	0.8	16
62	Liquid crystal phase diagram of the Gay-Berne fluid by density functional theory. Liquid Crystals, 1997, 23, 227-234.	0.9	24
63	A new potential for the description of intermolecular interactions for rigid biaxial molecules. Chemical Physics, 1997, 214, 253-260.	0.9	9
64	Studies of nematic-isotropic transition for a Gay-Berne fluid using the second virial approximation. Liquid Crystals, 1996, 21, 265-271.	0.9	19
65	Scaling model of annihilation-diffusion kinetics for charged particles with long-range interactions. Physical Review E, 1996, 54, R1056-R1057.	0.8	4
66	Annihilation rate and scaling in a two-dimensional system of charged particles. Physical Review E, 1995, 51, 411-417.	0.8	17
67	Scaling theory of particle annihilation in systems with a long-range interaction. Physical Review E, 1995, 52, 2583-2586.	0.8	8
68	<title>Theory of chiral-racemic mixtures near the Smectic C-Smectic A transition point: dependence of spontaneous polarization and transition temperature on enantiometric excess</title> . , 1994, , .		5
69	Polyolefin/Clay Nanocomposites: Theory and Simulation. , 0, , 415-448.		6
70	Mesoscale Modeling of Micellization and Adsorption of Surfactants and Surfactant-Like Polymers in Solution: Challenges and Opportunities. Industrial & amp; Engineering Chemistry Research, 0, , .	1.8	4