Marjan Mernik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3724317/publications.pdf

Version: 2024-02-01

201674 51608 7,658 129 27 86 citations h-index g-index papers 135 135 135 4954 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	RNGSGLR: Generalization of the Context-Aware Scanning Architecture for All Character-Level Context-Free Languages. Mathematics, 2022, 10, 2436.	2.2	2
2	A novel direct measure of exploration and exploitation based on attraction basins. Expert Systems With Applications, 2021, 167, 114353.	7.6	31
3	A Case Study on the Design and Implementation of a Platform for Hand Rehabilitation. Applied Sciences (Switzerland), 2021, 11, 389.	2.5	8
4	The screening phase in systematic reviews: Can we speed up the process?. Advances in Computers, 2021, 123, 115-191.	1.6	4
5	A JSSP solution for production planning optimization combining industrial engineering and evolutionary algorithms. Computer Science and Information Systems, 2021, 18, 349-378.	1.0	2
6	Quality of information and communication technology introduction. Software Quality Journal, 2021, 29, 195-196.	2.2	0
7	Inferring Absolutely Non-Circular Attribute Grammars with a Memetic Algorithm. Applied Soft Computing Journal, 2021, 100, 106956.	7.2	5
8	Attraction Basins in Metaheuristics: A Systematic Mapping Study. Mathematics, 2021, 9, 3036.	2.2	3
9	Graph grammar induction. Advances in Computers, 2020, , 133-181.	1.6	1
10	From Grammar Inference to Semantic Inferenceâ€"An Evolutionary Approach. Mathematics, 2020, 8, 816.	2.2	7
10	From Grammar Inference to Semantic Inferenceâ€"An Evolutionary Approach. Mathematics, 2020, 8, 816. Determination of a Hysteresis Model Parameters with the Use of Different Evolutionary Methods for an Innovative Hysteresis Model. Mathematics, 2020, 8, 201.	2.2	7
	Determination of a Hysteresis Model Parameters with the Use of Different Evolutionary Methods for		
11	Determination of a Hysteresis Model Parameters with the Use of Different Evolutionary Methods for an Innovative Hysteresis Model. Mathematics, 2020, 8, 201. Tuning Multi-Objective Evolutionary Algorithms on Different Sized Problem Sets. Mathematics, 2019, 7,	2.2	14
11 12	Determination of a Hysteresis Model Parameters with the Use of Different Evolutionary Methods for an Innovative Hysteresis Model. Mathematics, 2020, 8, 201. Tuning Multi-Objective Evolutionary Algorithms on Different Sized Problem Sets. Mathematics, 2019, 7, 824. A Tool Support for Model-Driven Development: An Industrial Case Study from a Measurement Domain.	2.2	14
11 12 13	Determination of a Hysteresis Model Parameters with the Use of Different Evolutionary Methods for an Innovative Hysteresis Model. Mathematics, 2020, 8, 201. Tuning Multi-Objective Evolutionary Algorithms on Different Sized Problem Sets. Mathematics, 2019, 7, 824. A Tool Support for Model-Driven Development: An Industrial Case Study from a Measurement Domain. Applied Sciences (Switzerland), 2019, 9, 4553.	2.2 2.2 2.5	14 10 9
11 12 13	Determination of a Hysteresis Model Parameters with the Use of Different Evolutionary Methods for an Innovative Hysteresis Model. Mathematics, 2020, 8, 201. Tuning Multi-Objective Evolutionary Algorithms on Different Sized Problem Sets. Mathematics, 2019, 7, 824. A Tool Support for Model-Driven Development: An Industrial Case Study from a Measurement Domain. Applied Sciences (Switzerland), 2019, 9, 4553. Long Term Memory Assistance for Evolutionary Algorithms. Mathematics, 2019, 7, 1129. Searching for soil models' parameters using metaheuristics. Applied Soft Computing Journal, 2018, 69,	2.2 2.2 2.5	14 10 9 16
11 12 13 14	Determination of a Hysteresis Model Parameters with the Use of Different Evolutionary Methods for an Innovative Hysteresis Model. Mathematics, 2020, 8, 201. Tuning Multi-Objective Evolutionary Algorithms on Different Sized Problem Sets. Mathematics, 2019, 7, 824. A Tool Support for Model-Driven Development: An Industrial Case Study from a Measurement Domain. Applied Sciences (Switzerland), 2019, 9, 4553. Long Term Memory Assistance for Evolutionary Algorithms. Mathematics, 2019, 7, 1129. Searching for soil models' parameters using metaheuristics. Applied Soft Computing Journal, 2018, 69, 131-148. Program comprehension of domain-specific and general-purpose languages: replication of a family of experiments using integrated development environments. Empirical Software Engineering, 2018, 23,	2.2 2.5 2.2 7.2	14 10 9 16

#	Article	IF	CITATIONS
19	The impact of Quality Indicators on the rating of Multi-objective Evolutionary Algorithms. Applied Soft Computing Journal, 2017, 55, 265-275.	7.2	36
20	Two-level evolutionary algorithm for discovering relations between nodes' features in a complex network. Applied Soft Computing Journal, 2017, 56, 82-93.	7.2	7
21	Ranking Multi-Objective Evolutionary Algorithms using a chess rating system with Quality Indicator ensemble. , 2017, , .		6
22	Domain-Specific Languages: A Systematic Mapping Study. Lecture Notes in Computer Science, 2017, , 464-472.	1.3	8
23	On the Importance of the Artificial Bee Colony Control Parameter â€~Limit'. Information Technology and Control, 2017, 46, .	2.1	6
24	Special issue on quality in model-driven engineering. Software Quality Journal, 2016, 24, 597-599.	2.2	1
25	Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms. Information Sciences, 2016, 372, 446-469.	6.9	70
26	Foreword to the Thematic Track: Quality Aspects in Model-Driven Engineering. , 2016, , .		1
27	Quality in model-driven engineering: a tertiary study. Software Quality Journal, 2016, 24, 601-633.	2.2	22
28	Domain-Specific Languages: A Systematic Mapping Study. Information and Software Technology, 2016, 71, 77-91.	4.4	151
29	Test automation of a measurement system using a domain-specific modelling language. Journal of Systems and Software, 2016, 111, 74-88.	4.5	14
30	Declarative specifications for the development of multi-agent systems. Computer Standards and Interfaces, 2016, 43, 91-115.	5.4	18
31	Is a comparison of results meaningful from the inexact replications of computational experiments?. Soft Computing, 2016, 20, 223-235.	3.6	55
32	Information System Software Development with Support for Application Traceability. Lecture Notes in Computer Science, 2015, , 513-527.	1.3	0
33	Hybrid evolutionary algorithm for the b-chromatic number. Journal of Heuristics, 2015, 21, 501-521.	1.4	7
34	Converting metamodels to graph grammars: doing without advanced graph grammar features. Software and Systems Modeling, 2015, 14, 1297-1317.	2.7	14
35	On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation. Information Sciences, 2015, 291, 115-127.	6.9	199
36	Globalized Domain Specific Language Engineering. Lecture Notes in Computer Science, 2015, , 43-69.	1.3	1

#	Article	IF	Citations
37	Debugging measurement systems using a domain-specific modeling language. Computers in Industry, 2014, 65, 622-635.	9.9	12
38	A chess rating system for evolutionary algorithms: A new method for the comparison and ranking of evolutionary algorithms. Information Sciences, 2014, 277, 656-679.	6.9	103
39	Special issue on realizing artificial intelligence synergies in software engineering. Software Quality Journal, 2014, 22, 49-50.	2.2	0
40	On the use of a domain-specific modeling language in the development of multiagent systems. Engineering Applications of Artificial Intelligence, 2014, 28, 111-141.	8.1	44
41	Replication and comparison of computational experiments in applied evolutionary computing: Common pitfalls and guidelines to avoid them. Applied Soft Computing Journal, 2014, 19, 161-170.	7.2	131
42	Towards building a forensics aware language for secure logging. Computer Science and Information Systems, 2014, 11, 1291-1314.	1.0	6
43	SimpleConcepts: A lightweight extension to C++ to support constraints on generic types. Computer Science and Information Systems, 2014, 11, 1361-1379.	1.0	0
44	Graph 3-coloring with a hybrid self-adaptive evolutionary algorithm. Computational Optimization and Applications, 2013, 54, 741-770.	1.6	17
45	Exploration and exploitation in evolutionary algorithms. ACM Computing Surveys, 2013, 45, 1-33.	23.0	894
46	An object-oriented approach to language compositions for software language engineering. Journal of Systems and Software, 2013, 86, 2451-2464.	4.5	45
47	Special section on the Programming Languages track at the 26th ACM Symposium on Applied Computing. Science of Computer Programming, 2013, 78, 613-614.	1.9	0
48	A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting Sovova's mass transfer model. Applied Soft Computing Journal, 2013, 13, 3792-3805.	7.2	78
49	A high-level framework for parallelizing legacy applications for multiple platforms. , 2013, , .		2
50	A DSL for the development of software agents working within a semantic web environment. Computer Science and Information Systems, 2013, 10, 1525-1556.	1.0	19
51	Easytime++: A Case Study Of Incremental Domain-Specific Language Development. Information Technology and Control, 2013, 42, .	2.1	5
52	Report from the first international workshop on realizing artificial intelligence synergies in software engineering (RAISE 2012). Software Engineering Notes: an Informal Newsletter of the Special Interest Committee on Software Engineering / ACM, 2012, 37, 34-35.	0.7	2
53	PPModel: a modeling tool for source code maintenance and optimization of parallel programs. Journal of Supercomputing, 2012, 62, 1560-1582.	3. 6	2
54	Tools and techniques for non-invasive explicit parallelization. Journal of Supercomputing, 2012, 62, 1583-1608.	3 . 6	2

#	Article	IF	CITATIONS
55	Improving Grammar Inference by a Memetic Algorithm. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2012, 42, 692-703.	2.9	9
56	Introducing domain-specific language implementation using web service-oriented technologies. Multiagent and Grid Systems, 2012, 8, 19-44.	0.9	1
57	A hybrid evolutionary algorithm for tuning a cloth-simulation model. Applied Soft Computing Journal, 2012, 12, 266-273.	7.2	30
58	A memetic grammar inference algorithm for language learning. Applied Soft Computing Journal, 2012, 12, 1006-1020.	7.2	28
59	Development of data acquisition systems by using a domain-specific modeling language. Computers in Industry, 2012, 63, 181-192.	9.9	17
60	Raising the level of abstraction for developing message passing applications. Journal of Supercomputing, 2012, 59, 1079-1100.	3.6	12
61	Program comprehension of domain-specific and general-purpose languages: comparison using a family of experiments. Empirical Software Engineering, 2012, 17, 276-304.	3.9	91
62	Implementation of EasyTime formal semantics using a LISA compiler generator. Computer Science and Information Systems, 2012, 9, 1019-1044.	1.0	5
63	Ontop: A Component for Acquiring Information from OWL Ontologies. Acta Electrotechnica Et Informatica, 2012, 12, .	0.3	0
64	Graph Grammar Induction as a Parser-Controlled Heuristic Search Process. Lecture Notes in Computer Science, 2012, , 121-136.	1.3	3
65	Design and implementation of domain-specific language easytime. Computer Languages, Systems and Structures, 2011, 37, 151-167.	1.4	22
66	A technique for non-invasive application-level checkpointing. Journal of Supercomputing, 2011, 57, 227-255.	3.6	13
67	Analysis of exploration and exploitation in evolutionary algorithms by ancestry trees. International Journal of Innovative Computing and Applications, $2011, 3, 11$.	0.2	70
68	From DCOM interfaces to domain-specific modeling language: A case study on the sequencer. Computer Science and Information Systems, 2011, 8, 361-378.	1.0	10
69	Ontology driven development of domain-specific languages. Computer Science and Information Systems, 2011, 8, 317-342.	1.0	44
70	Challenges and directions in formalizing the semantics of modeling languages. Computer Science and Information Systems, 2011, 8, 225-253.	1.0	70
71	EMBEDDING DSLS INTO GPLS: A GRAMMATICAL INFERENCE APPROACH *. Information Technology and Control, 2011, 40, .	2.1	6
72	Fitting Sovova's mass transfer model using an evolutionary algorithm and differential evolution. International Journal of Innovative Computing and Applications, 2010, 2, 237.	0.2	3

#	Article	IF	CITATIONS
73	A hybrid self-adaptive evolutionary algorithm for marker optimization in the clothing industry. Applied Soft Computing Journal, 2010, 10, 409-422.	7.2	24
74	Component-based LR parsing. Computer Languages, Systems and Structures, 2010, 36, 16-33.	1.4	9
75	Abstract syntax driven language development. , 2010, , .		8
76	Domain-specific software engineering. , 2010, , .		15
77	Can domain-specific languages be implemented by service-oriented architecture?. , 2010, , .		1
78	Automatic generation of model traversals from metamodel definitions. , 2010, , .		1
79	CUDACL: A tool for CUDA and OpenCL programmers. , 2010, , .		6
80	A SOA Approach for Domain-Specific Language Implementation. , 2010, , .		2
81	Metamodel Recovery from Multi-tiered Domains Using Extended MARS. , 2010, , .		5
82	Comparing general-purpose and domain-specific languages: An empirical study. Computer Science and Information Systems, 2010, 7, 247-264.	1.0	102
83	On automata and language based grammar metrics. Computer Science and Information Systems, 2010, 7, 309-329.	1.0	21
84	Grammar Inference Technology Applications in Software Engineering. Lecture Notes in Computer Science, 2010, , 276-279.	1.3	0
85	On defining quality based grammar metrics. , 2009, , .		O
86	Applying program comprehension techniques to karel robot programs. , 2009, , .		1
87	MARS: Metamodel Recovery from Multi-tiered Models Using Grammar Inference. , 2009, , .		2
88	To explore or to exploit: An entropy-driven approach for evolutionary algorithms. International Journal of Knowledge-Based and Intelligent Engineering Systems, 2009, 13, 185-206.	1.0	21
89	Guest Editors' Introduction: What Kinds of Nails Need a Domain-Specific Hammer?. IEEE Software, 2009, 26, 15-18.	1.8	78
90	Developing scientific applications using Generative Programming. , 2009, , .		5

#	Article	IF	Citations
91	Grammar inference algorithms and applications in software engineering. , 2009, , .		4
92	Influence of domain-specific notation to program understanding., 2009,,.		4
93	Using Ontologies in the Domain Analysis of Domain-Specific Languages. Lecture Notes in Computer Science, 2009, , 332-342.	1.3	28
94	Unit Testing for Domain-Specific Languages. Lecture Notes in Computer Science, 2009, , 125-147.	1.3	8
95	Implementation of Programming Languages Syntax and Semantics. , 2009, , 1863-1869.		1
96	Optimization of markers in clothing industry. Engineering Applications of Artificial Intelligence, 2008, 21, 669-678.	8.1	9
97	Grammarâ€driven generation of domainâ€specific language debuggers. Software - Practice and Experience, 2008, 38, 1073-1103.	3.6	28
98	A preliminary study on various implementation approaches of domain-specific language. Information and Software Technology, 2008, 50, 390-405.	4.4	113
99	MARS: A metamodel recovery system using grammar inference. Information and Software Technology, 2008, 50, 948-968.	4.4	43
100	AN UNSUPERVISED INCREMENTAL LEARNING ALGORITHM FOR DOMAIN-SPECIFIC LANGUAGE DEVELOPMENT. Applied Artificial Intelligence, 2008, 22, 707-729.	3.2	17
101	Domain-specific languages as key tools for ulssis engineering. , 2008, , .		2
102	A Domain-Specific Language for Application-Level Checkpointing. Lecture Notes in Computer Science, 2008, , 26-38.	1.3	4
103	Program comprehension for domain-specific languages. Computer Science and Information Systems, 2008, 5, 1-17.	1.0	25
104	A clustering entropy-driven approach for exploring and exploiting noisy functions., 2007,,.		4
105	Experiences on DSL Tools for Visual Studio. Information Technology Interfaces (ITI), Proceedings of the International Conference on, 2007, , .	0.0	0
106	A tool for compiler construction based on aspect-oriented specifications. Proceedings - IEEE Computer Society's International Computer Software and Applications Conference, 2007, , .	0.0	0
107	AspectLISA: An Aspect-oriented Compiler Construction System Based on Attribute Grammars. Electronic Notes in Theoretical Computer Science, 2006, 164, 37-53.	0.9	7
108	Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary Computation, 2006, 10, 646-657.	10.0	2,854

#	Article	IF	CITATIONS
109	Evolutionary search for optimal combinations of markers in clothing manufacturing., 2006,,.		4
110	Specifying Languages Using Aspect-oriented Approach: AspectLISA. Journal of Computing and Information Technology, 2006, 14, 343.	0.3	1
111	Extracting grammar from programs. ACM SIGPLAN Notices, 2005, 40, 29-38.	0.2	21
112	Incremental programming language development. Computer Languages, Systems and Structures, 2005, 31, 1-16.	1.4	49
113	When and how to develop domain-specific languages. ACM Computing Surveys, 2005, 37, 316-344.	23.0	1,244
114	Inferring Context-Free Grammars for Domain-Specific Languages. Electronic Notes in Theoretical Computer Science, 2005, 141, 99-116.	0.9	11
115	Extracting grammar from programs. ACM SIGPLAN Notices, 2005, 40, 39-46.	0.2	29
116	Weaving a debugging aspect into domain-specific language grammars., 2005,,.		23
117	An educational tool for teaching compiler construction. IEEE Transactions on Education, 2003, 46, 61-68.	2.4	48
118	Automatic Generation of Language-based Tools. Electronic Notes in Theoretical Computer Science, 2002, 65, 77-96.	0.9	8
119	Design and implementation of simple object description language. , 2001, , .		3
120	AspectCOOL. ACM SIGPLAN Notices, 2001, 36, 84-94.	0.2	8
121	Implementation of multiple attribute grammar inheritance in the tool LISA. ACM SIGPLAN Notices, 1999, 34, 68-75.	0.2	22
122	Automatic implementation of programming languages using object oriented approach. Journal of Systems Architecture, 1997, 43, 203-210.	4.3	7
123	LISA. ACM SIGPLAN Notices, 1995, 30, 71-79.	0.2	23
124	Decision trees based on automatic learning and their use in cardiology. Journal of Medical Systems, 1994, 18, 201-206.	3.6	45
125	Controlling industrial processes with a dataflow industrial controller: A way to achieve better performances. Microprocessing and Microprogramming, 1990, 28, 95-99.	0.2	2
126	Robot Learning of Domain Specific Knowledge from Natural Language Sources. , 0, , .		0

#	Article	IF	CITATIONS
127	A Comparison between Different Chess Rating Systems for Ranking Evolutionary Algorithms. , 0, , .		9
128	A Domain-Specific Language for High-Level Parallelization. , 0, , 533-552.		1
129	A Domain-Specific Language for High-Level Parallelization. , 0, , 276-295.		o