
Concepcion Garcia-Pardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3724272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Breathing on UWB Propagation Characteristics for Ingestible and Implantable Devices. IEEE Transactions on Antennas and Propagation, 2022, 70, 3118-3122.	5.1	2
2	Comments on "What is the radiation before 5G? A correlation study between measurements in situ and in real time and epidemiological indicators in Vallecas, Madrid― Environmental Research, 2022, 212, 113314.	7.5	0
3	IoT for healthcare applications. , 2021, , 221-252.		Ο
4	Doppler Characterization in Ultra Wideband BAN Channels During Breathing. IEEE Transactions on Antennas and Propagation, 2020, 68, 1066-1073.	5.1	1
5	UWB Channel Characterization for Wireless Capsule Endoscopy Localization. , 2020, , .		9
6	Experimental Path Loss Models Comparison and Localization of Wireless Endoscopic Capsule in the Ultra-Wideband Frequency Band. EAI/Springer Innovations in Communication and Computing, 2020, , 443-453.	1.1	0
7	UWB RSS-Based Localization for Capsule Endoscopy Using a Multilayer Phantom and <i>In Vivo</i> Measurements. IEEE Transactions on Antennas and Propagation, 2019, 67, 5035-5043.	5.1	26
8	Initial Delay Domain UWB Channel Characterization for In-Body Area Networks. , 2019, , .		2
9	RSS-Based Secret Key Generation in Wireless In-body Networks. , 2019, , .		9
10	Experimental In-Body to On-Body and In-Body to In-Body Path Loss Models of Planar Elliptical Ring Implanted Antenna in the Ultra-Wide Band. , 2019, , .		12
11	Gel Phantoms for Body Microwave Propagation in the (2 to 26.5) GHz Frequency Band. IEEE Transactions on Antennas and Propagation, 2019, 67, 6564-6573.	5.1	9
12	Analysis of the Localization Error for Capsule Endoscopy Applications at UWB Frequencies. , 2019, , .		3
13	Dielectric Characterization of <italic>In Vivo</italic> Abdominal and Thoracic Tissues in the 0.5–26.5 GHz Frequency Band for Wireless Body Area Networks. IEEE Access, 2019, 7, 31854-31864.	4.2	14
14	UWB Path Loss Models for Ingestible Devices. IEEE Transactions on Antennas and Propagation, 2019, 67, 5025-5034.	5.1	33
15	Ultrawideband Technology for Medical In-Body Sensor Networks: An Overview of the Human Body as a Propagation Medium, Phantoms, and Approaches for Propagation Analysis. IEEE Antennas and Propagation Magazine, 2018, 60, 19-33.	1.4	45
16	Frequency Dependence of UWB In-Body Radio Channel Characteristics. IEEE Microwave and Wireless Components Letters, 2018, 28, 359-361.	3.2	9
17	Experimental Phantom-Based Security Analysis for Next-Generation Leadless Cardiac Pacemakers. Sensors, 2018, 18, 4327.	3.8	9
18	Impact of Measurement Points Distribution on the Parameters of UWB Implant Channel Model. , 2018, ,		1

2

#	Article	IF	CITATIONS
19	Initial Results of Semisolid Phantoms Based on Synthetic Hydrogels for the cmWave Band. , 2018, , .		1
20	Variability of the Dielectric Properties Due to Tissue Heterogeneity and Its Influence on the Development of EM Phantoms. , 2018, , .		1
21	Impact of Receivers Location on the Accuracy of Capsule Endoscope Localization. , 2018, , .		7
22	Elaboration of Simple Gel Phantoms for 5G/mm Wave Communications. , 2018, , .		0
23	Experimental phantom-based evaluation of Physical Layer Security for Future Leadless Cardiac Pacemaker. , 2018, , .		5
24	Experimental Assessment of Time Reversal for In-Body to In-Body UWB Communications. Wireless Communications and Mobile Computing, 2018, 2018, 1-12.	1.2	1
25	Initial UWB in-body channel characterization using a novel multilayer phantom measurement setup. , 2018, , .		8
26	Localization for capsule endoscopy at UWB frequencies using an experimental multilayer phantom. , 2018, , .		8
27	Formulas for easy-to-prepare tailored phantoms at 2.4 GHz ISM band. , 2017, , .		11
28	Accurate broadband measurement of electromagnetic tissue phantoms using open-ended coaxial systems. , 2017, , .		4
29	UWB in-body channel performance by using a direct antenna designing procedure. , 2017, , .		16
30	Wideband phantoms of different body tissues for heterogeneous models in body area networks. , 2017, 2017, 3032-3035.		7
31	Characteristics Comparison of Three Different WCE Implanted Antennas in UWB Low Band. , 2017, , .		2
32	Experimental ultra wideband path loss models for implant communications. , 2016, , .		25
33	Tailor-Made Tissue Phantoms Based on Acetonitrile Solutions for Microwave Applications up to 18 GHz. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 3987-3994.	4.6	26
34	Dielectric characterization of healthy and malignant colon tissues in the 0.5–18 GHz frequency band. Physics in Medicine and Biology, 2016, 61, 7334-7346.	3.0	31
35	Interference Analysis for DVB-T2 Network Planning in Colombia with other Television Broadcasting Technologies. IEEE Latin America Transactions, 2016, 14, 1162-1168.	1.6	0
36	Spatial In-Body Channel Characterization Using an Accurate UWB Phantom. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 3995-4002.	4.6	19

#	Article	IF	CITATIONS
37	Spectrum Sharing for LTE-A and DTT: Field Trials of an Indoor LTE-A Femtocell in DVB-T2 Service Area. IEEE Transactions on Broadcasting, 2016, 62, 552-561.	3.2	15
38	Initial phantom measurements of the Doppler effect during respiration in BAN. , 2016, , .		0
39	Experimental UWB frequency analysis for implant communications. , 2015, 2015, 5457-60.		11
40	Effect of the Receiver Attachment Position on Ultrawideband Off-Body Channels. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1101-1104.	4.0	24
41	Experimental Path Loss Models for In-Body Communications within 2.36-2.5 GHz. IEEE Journal of Biomedical and Health Informatics, 2015, 19, 1-1.	6.3	32
42	Coexistence of digital terrestrial television and next generation cellular networks in the 700 MHz band. IEEE Wireless Communications, 2014, 21, 63-69.	9.0	31
43	Ultra wideband propagation for future in-body sensor networks. , 2014, , .		11
44	Time Frequency Slicing coverage gain modeling for future broadcasting networks. , 2014, , .		0
45	Experimental UWB channel characterization on fire scenarios in confined environments. , 2014, , .		0
46	Influence of the posture in body surface to external UWB body area networks channels. , 2013, , .		1
47	MIMO CAPACITY IN UWB CHANNELS IN AN OFFICE ENVIRONMENT FOR DIFFERENT POLARIZATIONS. Progress in Electromagnetics Research C, 2013, 44, 109-122.	0.9	4
48	Frequency Dependence of 2–5 GHz Polarized UWB Channel Parameters in Office Environment. IEEE Transactions on Antennas and Propagation, 2012, 60, 2970-2979.	5.1	7
49	Experimental investigation on channel characteristics in tunnel environment for Time Reversal Ultra Wide Band techniques. Radio Science, 2012, 47, .	1.6	4
50	Initial experimental characterization of the millimeter-wave radio channel. , 2012, , .		5
51	DOUBLE DIRECTIONAL CHANNEL MEASUREMENTS IN AN ARCHED TUNNEL AND INTERPRETATION USING RAY TRACING IN A RECTANGULAR TUNNEL. Progress in Electromagnetics Research M, 2012, 22, 91-107.	0.9	22
52	Time-Domain MIMO Channel Sounder Based on Code-Division Multiplexing. IEEE Transactions on Instrumentation and Measurement, 2012, 61, 2325-2327.	4.7	2
53	Comparison between Time and Frequency Domain MIMO Channel Sounders. , 2010, , .		1
54	MIMO Channel Capacity With Polarization Diversity in Arched Tunnels. IEEE Antennas and Wireless Propagation Letters, 2009, 8, 1186-1189.	4.0	24

#	Article	IF	CITATIONS
55	Path loss and delay spread in UWB channels. Digest / IEEE Antennas and Propagation Society International Symposium, 2009, , .	0.0	1
56	Comparison of Various Urban Radiowave Propagation Models With Measurements. IEEE Antennas and Wireless Propagation Letters, 2009, 8, 977-980.	4.0	8