Fabio Penna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3724084/publications.pdf

Version: 2024-02-01

70 papers 8,917 citations

37 h-index

94433

102487 66 g-index

73 all docs 73 docs citations

73 times ranked

18861 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metabolism, 2015, 22, 86-99.	16.2	635
3	Molecular and cellular mechanisms of skeletal muscle atrophy: an update. Journal of Cachexia, Sarcopenia and Muscle, 2012, 3, 163-179.	7.3	264
4	Autophagic Degradation Contributes to Muscle Wasting in Cancer Cachexia. American Journal of Pathology, 2013, 182, 1367-1378.	3.8	212
5	Role of Inflammation in Muscle Homeostasis and Myogenesis. Mediators of Inflammation, 2015, 2015, 1-14.	3.0	197
6	Muscle Wasting and Impaired Myogenesis in Tumor Bearing Mice Are Prevented by ERK Inhibition. PLoS ONE, 2010, 5, e13604.	2.5	154
7	Muscle myostatin signalling is enhanced in experimental cancer cachexia. European Journal of Clinical Investigation, 2008, 38, 531-538.	3.4	150
8	IGF-1 is downregulated in experimental cancer cachexia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R674-R683.	1.8	149
9	Ca2+-dependent proteolysis in muscle wasting. International Journal of Biochemistry and Cell Biology, 2005, 37, 2134-2146.	2.8	135
10	Autophagy is induced in the skeletal muscle of cachectic cancer patients. Scientific Reports, 2016, 6, 30340.	3.3	117
11	Are there any benefits of exercise training in cancer cachexia?. Journal of Cachexia, Sarcopenia and Muscle, 2012, 3, 73-76.	7.3	102
12	Muscle wasting in diabetic and in tumor-bearing rats: Role of oxidative stress. Free Radical Biology and Medicine, 2008, 44, 584-593.	2.9	94
13	Muscle atrophy in experimental cancer cachexia: Is the IGFâ€1 signaling pathway involved?. International Journal of Cancer, 2010, 127, 1706-1717.	5.1	94
14	Mitochondrial and sarcoplasmic reticulum abnormalities in cancer cachexia: Altered energetic efficiency?. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2770-2778.	2.4	83
15	Combination of exercise training and erythropoietin prevents cancer-induced muscle alterations. Oncotarget, 2015, 6, 43202-43215.	1.8	78
16	Understanding the common mechanisms of heart and skeletal muscle wasting in cancer cachexia. Oncogenesis, 2021, 10, 1.	4.9	75
17	Combined approach to counteract experimental cancer cachexia: eicosapentaenoic acid and training exercise. Journal of Cachexia, Sarcopenia and Muscle, 2011, 2, 95-104.	7.3	72
18	Autophagy Exacerbates Muscle Wasting in Cancer Cachexia and Impairs Mitochondrial Function. Journal of Molecular Biology, 2019, 431, 2674-2686.	4.2	69

#	Article	IF	CITATIONS
19	Changes in Myostatin Signaling in Non-Weight-Losing Cancer Patients. Annals of Surgical Oncology, 2012, 19, 1350-1356.	1.5	68
20	Moderate exercise in mice improves cancer plus chemotherapyâ€induced muscle wasting and mitochondrial alterations. FASEB Journal, 2019, 33, 5482-5494.	0.5	68
21	The mitochondrial metabolic reprogramming agent trimetazidine as an â€exercise mimetic' in cachectic C26â€bearing mice. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 954-973.	7.3	63
22	Deacetylase Inhibitors Modulate the Myostatin/Follistatin Axis without Improving Cachexia in Tumor-Bearing Mice. Current Cancer Drug Targets, 2009, 9, 608-616.	1.6	61
23	Effect of the specific proteasome inhibitor bortezomib on cancerâ€related muscle wasting. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 345-354.	7.3	58
24	Experimental cancer cachexia: Evolving strategies for getting closer to the human scenario. Seminars in Cell and Developmental Biology, 2016, 54, 20-27.	5.0	58
25	Perturbed BMP signaling and denervation promote muscle wasting in cancer cachexia. Science Translational Medicine, 2021, 13, .	12.4	58
26	Complete reversal of muscle wasting in experimental cancer cachexia: Additive effects of activin type <scp>II</scp> receptor inhibition and βâ€2 agonist. International Journal of Cancer, 2016, 138, 2021-2029.	5.1	55
27	Moderate Exercise Improves Experimental Cancer Cachexia by Modulating the Redox Homeostasis. Cancers, 2019, 11, 285.	3.7	54
28	Coming back. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 241-246.	2.5	53
29	Treating cachexia using soluble ACVR2B improves survival, alters mTOR localization, and attenuates liver and spleen responses. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 514-529.	7.3	53
30	The Skeletal Muscle as an Active Player Against Cancer Cachexia. Frontiers in Physiology, 2019, 10, 41.	2.8	48
31	Animal models for cancer cachexia. Current Opinion in Supportive and Palliative Care, 2016, 10, 281-287.	1.3	47
32	A multifactorial anti-cachectic approach for cancer cachexia in a rat model undergoing chemotherapy. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 48-59.	7.3	45
33	Are antioxidants useful for treating skeletal muscle atrophy?. Free Radical Biology and Medicine, 2009, 47, 906-916.	2.9	44
34	\hat{l}^2 -hydroxy- \hat{l}^2 -methylbutyrate (HMB) attenuates muscle and body weight loss in experimental cancer cachexia. International Journal of Oncology, 2011, 38, 713-20.	3.3	43
35	Interleukinâ€4 administration improves muscle function, adult myogenesis, and lifespan of colon carcinomaâ€bearing mice. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 783-801.	7. 3	42
36	Glutamine prevents myostatin hyperexpression and protein hypercatabolism induced in C2C12 myotubes by tumor necrosis factor-α. Amino Acids, 2011, 40, 585-594.	2.7	38

#	Article	IF	CITATIONS
37	Differences in food intake of tumourâ€bearing cachectic mice are associated with hypothalamic serotonin signalling. Journal of Cachexia, Sarcopenia and Muscle, 2015, 6, 84-94.	7.3	38
38	Anti-cytokine strategies for the treatment of cancer-related anorexia and cachexia. Expert Opinion on Biological Therapy, 2010, 10, 1241-1250.	3.1	37
39	Vitamin D and VDR in cancer cachexia and muscle regeneration. Oncotarget, 2017, 8, 21778-21793.	1.8	37
40	Modulating Metabolism to Improve Cancer-Induced Muscle Wasting. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-11.	4.0	34
41	Combined Exercise Training Positively Affects Muscle Wasting in Tumor-Bearing Mice. Medicine and Science in Sports and Exercise, 2019, 51, 1387-1395.	0.4	32
42	Targeting Mitochondria by SS-31 Ameliorates the Whole Body Energy Status in Cancer- and Chemotherapy-Induced Cachexia. Cancers, 2021, 13, 850.	3.7	32
43	Interference with Ca2+-Dependent Proteolysis Does Not Alter the Course of Muscle Wasting in Experimental Cancer Cachexia. Frontiers in Physiology, 2017, 8, 213.	2.8	28
44	Early changes of muscle insulinâ€like growth factorâ€1 and myostatin gene expression in gastric cancer patients. Muscle and Nerve, 2013, 48, 387-392.	2.2	26
45	Iron supplementation is sufficient to rescue skeletal muscle mass and function in cancer cachexia. EMBO Reports, 2022, 23, e53746.	4.5	26
46	The Redox Balance: A Target for Interventions Against Muscle Wasting in Cancer Cachexia?. Antioxidants and Redox Signaling, 2020, 33, 542-558.	5.4	24
47	Distinct Behaviour of Sorafenib in Experimental Cachexia-Inducing Tumours: The Role of STAT3. PLoS ONE, 2014, 9, e113931.	2.5	24
48	Mitochondrial Dysfunction in Cancer Cachexia: Impact on Muscle Health and Regeneration. Cells, 2021, 10, 3150.	4.1	24
49	Point mutated caveolin-3 form (P104L) impairs myoblast differentiation via Akt and p38 signalling reduction, leading to an immature cell signature. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 468-479.	3.8	21
50	Sarcopenia Diagnosis: Reliability of the Ultrasound Assessment of the Tibialis Anterior Muscle as an Alternative Evaluation Tool. Diagnostics, 2021, 11, 2158.	2.6	21
51	The role of vitamin D in cancer cachexia. Current Opinion in Supportive and Palliative Care, 2017, 11, 287-292.	1.3	19
52	Extracellular vesicles derived from tumour cells as a trigger of energy crisis in the skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 481-494.	7.3	18
53	Erythropoietin administration partially prevents adipose tissue loss in experimental cancer cachexia models. Journal of Lipid Research, 2013, 54, 3045-3051.	4.2	17
54	Phosphocaveolin-1 Enforces Tumor Growth and Chemoresistance in Rhabdomyosarcoma. PLoS ONE, 2014, 9, e84618.	2.5	17

#	Article	IF	Citations
55	Involvement of released sphingosine 1-phosphate/sphingosine 1-phosphate receptor axis in skeletal muscle atrophy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3598-3614.	3.8	14
56	Targeting the Activin Receptor Signaling to Counteract the Multi-Systemic Complications of Cancer and Its Treatments. Cells, 2021, 10, 516.	4.1	14
57	Cytotoxic Properties of Clofibrate and other Peroxisome Proliferators: Relevance to Cancer Progression. Current Medicinal Chemistry, 2010, 17, 309-320.	2.4	12
58	Control of Skeletal Muscle Atrophy Associated to Cancer or Corticosteroids by Ceramide Kinase. Cancers, 2021, 13, 3285.	3.7	11
59	Modulations of the calcineurin/NF-AT pathway in skeletal muscle atrophy. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 1028-1036.	2.4	9
60	New developments in investigational HDAC inhibitors for the potential multimodal treatment of cachexia. Expert Opinion on Investigational Drugs, 2019, 28, 179-189.	4.1	9
61	Mechanisms of clofibrate-induced apoptosis in Yoshida AH-130 hepatoma cells. Biochemical Pharmacology, 2009, 77, 169-176.	4.4	8
62	Novel investigational drugs mimicking exercise for the treatment of cachexia. Expert Opinion on Investigational Drugs, 2016, 25, 63-72.	4.1	7
63	Mechanism-Based Therapeutic Approaches to Cachexia. Vitamins and Hormones, 2013, 92, 271-299.	1.7	6
64	Caspase 2 Activation and ER Stress Drive Rapid Jurkat Cell Apoptosis by Clofibrate. PLoS ONE, 2012, 7, e45327.	2.5	6
65	Muscle mitochondria and oxidative metabolism as targets against cancer cachexia. Journal of Cancer Metastasis and Treatment, 0, 2019, .	0.8	2
66	Research update for articles published in EJCI in 2008. European Journal of Clinical Investigation, 2010, 40, 770-789.	3.4	1
67	Promising treatments for muscle wasting in cancer: focus on microRNA. Expert Review of Quality of Life in Cancer Care, 2016, 1, 313-321.	0.6	1
68	Glutamine and Myostatin Expression in Muscle Wasting. , 2015, , 513-526.		1
69	Nutritional Support in Cancer. Current Nutrition and Food Science, 2007, 3, 242-248.	0.6	O
70	New Strategies for Metabolic Support in Cancer. Current Nutrition and Food Science, 2012, 8, 139-148.	0.6	0