Nathaniel D Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3723585/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selfâ€Heating in Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2020, 30, 1908649.	14.9	26
2	Determination of Fucose Concentration in a Lectin-Based Displacement Microfluidic Assay. Applied Biochemistry and Biotechnology, 2019, 188, 868-877.	2.9	2
3	A clip-on electroosmotic pump for oscillating flow in microfluidic cell culture devices. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	17
4	Patterning Highly Conducting Conjugated Polymer Electrodes for Soft and Flexible Microelectrochemical Devices. ACS Applied Materials & Interfaces, 2018, 10, 14978-14985.	8.0	15
5	A large-area, all-plastic, flexible electroosmotic pump. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	21
6	On the anodic deposition of poly-L-lysine on indium tin oxide. Electrochimica Acta, 2016, 196, 629-633.	5.2	5
7	Electroosmotic Pumps with Frits Synthesized from Potassium Silicate. PLoS ONE, 2015, 10, e0144065.	2.5	5
8	Conducting Polymer Electrodes for Gel Electrophoresis. PLoS ONE, 2014, 9, e89416.	2.5	12
9	Macroporous microcarriers for introducing cells into a microfluidic chip. Lab on A Chip, 2014, 14, 3502-3504.	6.0	11
10	Tailoring the conductivity of PEO-based electrolytes for temperature-sensitive printed electronics. Journal of Materials Science, 2013, 48, 5756-5767.	3.7	8
11	Electrochemical quartz crystal microbalance study of polyelectrolyte film growth under anodic conditions. Applied Surface Science, 2013, 280, 783-790.	6.1	15
12	Graphene electrodes for organic metal-free light-emitting devices. Physica Scripta, 2012, T146, 014023.	2.5	14
13	Flexible and Metal-Free Light-Emitting Electrochemical Cells Based on Graphene and PEDOT-PSS as the Electrode Materials. ACS Nano, 2011, 5, 574-580.	14.6	110
14	Electrolysisâ€reducing electrodes for electrokinetic devices. Electrophoresis, 2011, 32, 784-790.	2.4	49
15	Printable organic electrochemical circuit to record time–temperature history. Electrochimica Acta, 2010, 55, 7061-7066.	5.2	8
16	Graphene and Mobile Ions: The Key to All-Plastic, Solution-Processed Light-Emitting Devices. ACS Nano, 2010, 4, 637-642.	14.6	266
17	The dynamic organic p–n junction. Nature Materials, 2009, 8, 672-676.	27.5	298
18	On the Limited Operational Lifetime of Lightâ€Emitting Electrochemical Cells. Advanced Materials, 2008, 20, 1744-1749.	21.0	68

NATHANIEL D ROBINSON

#	Article	IF	CITATIONS
19	Electronically controlled pH gradients and proton oscillations. Organic Electronics, 2008, 9, 303-309.	2.6	31
20	Inkjet printed electrochemical organic electronics. Synthetic Metals, 2008, 158, 556-560.	3.9	96
21	Identifying and Alleviating Electrochemical Side-Reactions in Light-Emitting Electrochemical Cells. Journal of the American Chemical Society, 2008, 130, 4562-4568.	13.7	113
22	Electrochemical doping during light emission in polymer light-emitting electrochemical cells. Physical Review B, 2008, 78, .	3.2	28
23	Polymer Light-Emitting Electrochemical Cells: Doping Concentration, Emission-Zone Position, and Turn-On Time. Advanced Functional Materials, 2007, 17, 1807-1813.	14.9	78
24	Low-Voltage Polymer Field-Effect Transistors Gated via a Proton Conductor. Advanced Materials, 2007, 19, 97-101.	21.0	221
25	The effect of pH on the electrochemical over-oxidation in PEDOT:PSS films. Solid State Ionics, 2007, 177, 3521-3527.	2.7	127
26	The influence of electrodes on the performance of light-emitting electrochemical cells. Electrochimica Acta, 2007, 52, 6456-6462.	5.2	53
27	Organic materials for printed electronics. Nature Materials, 2007, 6, 3-5.	27.5	612
28	Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nature Materials, 2007, 6, 673-679.	27.5	352
29	Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film. Applied Physics Letters, 2006, 89, 143507.	3.3	97
30	Electrochemical wettability switches gate aqueous liquids in microfluidic systems. Lab on A Chip, 2006, 6, 1277.	6.0	25
31	On the Current Saturation Observed in Electrochemical Polymer Transistors. Journal of the Electrochemical Society, 2006, 153, H39.	2.9	61
32	Electrochemical control of surface wettability of poly(3-alkylthiophenes). Surface Science, 2006, 600, L148-L152.	1.9	47
33	Electronic modulation of an electrochemically induced wettability gradient to control water movement on a polyaniline surface. Thin Solid Films, 2006, 515, 2003-2008.	1.8	39
34	Evaluation of active materials designed for use in printable electrochromic polymer displays. Thin Solid Films, 2006, 515, 2485-2492.	1.8	30
35	Doping front propagation in light-emitting electrochemical cells. Physical Review B, 2006, 74, .	3.2	56
36	Switchable Charge Traps in Polymer Diodes. Advanced Materials, 2005, 17, 1798-1803.	21.0	48

NATHANIEL D ROBINSON

#	Article	IF	CITATIONS
37	Electrochemical Logic Circuits. Advanced Materials, 2005, 17, 353-358.	21.0	183
38	Diodes based on blends of molecular switches and conjugated polymers. Synthetic Metals, 2005, 150, 217-221.	3.9	19
39	Visualizing the Electric Field in Electrolytes Using Electrochromism from a Conjugated Polymer. Electrochemical and Solid-State Letters, 2005, 8, H12.	2.2	10
40	Patterning polythiophene films using electrochemical over-oxidation. Smart Materials and Structures, 2005, 14, N21-N25.	3.5	44
41	A Solid-State Organic Electronic Wettability Switch. Advanced Materials, 2004, 16, 316-320.	21.0	141
42	All-organic electrochemical device with bistable and dynamic functionality. , 2003, , .		1
43	Polymer-based electrochemical devices for logic functions and paper displays. , 2003, , .		0
44	Observations of Singularity Formation during the Capillary Collapse and Bubble Pinch-off of a Soap Film Bridge. Journal of Colloid and Interface Science, 2001, 241, 448-458.	9.4	37
45	Liquid bridge stabilization: theory guides a codimension-two experiment. Computer Methods in Applied Mechanics and Engineering, 1999, 170, 209-221.	6.6	5