Efren Guillo Sansano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3723531/publications.pdf

Version: 2024-02-01

687220 887953 31 605 13 17 citations h-index g-index papers 32 32 32 622 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characterization of Time Delay in Power Hardware in the Loop Setups. IEEE Transactions on Industrial Electronics, 2021, 68, 2703-2713.	5.2	22
2	A Distributed Control Scheme of Microgrids in Energy Internet Paradigm and Its Multisite Implementation. IEEE Transactions on Industrial Informatics, 2021, 17, 1141-1153.	7.2	57
3	Real-Time Coupling of Geographically Distributed Research Infrastructures: Taxonomy, Overview, and Real-World Smart Grid Applications. IEEE Transactions on Smart Grid, 2021, 12, 1747-1760.	6.2	23
4	Dynamic Equivalencing Supported by Load Disaggregation via Harmonic Current Analysis. , 2021, , .		0
5	Interface Compensation for More Accurate Power Transfer and Signal Synchronization within Power Hardware-in-the-Loop Simulation. , 2021, , .		9
6	Inverter-Based Voltage Control of Distribution Networks: A Three-Level Coordinated Method and Power Hardware-in-the-Loop Validation. IEEE Transactions on Sustainable Energy, 2020, 11, 2380-2391.	5.9	59
7	Load Frequency Control in Variable Inertia Systems. IEEE Transactions on Power Systems, 2020, 35, 4904-4907.	4.6	18
8	Advanced Laboratory Testing Methods Using Real-Time Simulation and Hardware-in-the-Loop Techniques: A Survey of Smart Grid International Research Facility Network Activities. Energies, 2020, 13, 3267.	1.6	47
9	Facilitating the Transition to an Inverter Dominated Power System: Experimental Evaluation of a Non-Intrusive Add-On Predictive Controller. Energies, 2020, 13, 4237.	1.6	1
10	Hardware-in-the-Loop Assessment Methods. , 2020, , 51-66.		6
11	Laboratory Coupling Approach. , 2020, , 67-86.		2
12	A Scheme to Improve the Stability and Accuracy of Power Hardware-in-the-Loop Simulation., 2020,,.		15
13	Aggregated Energy Storage for Power System Frequency Control: A Finite-Time Consensus Approach. IEEE Transactions on Smart Grid, 2019, 10, 3675-3686.	6.2	81
14	Review of Approaches for Using Synchrophasor Data for Real-Time Wide-Area Control., 2019,,.		1
15	Decentralisedâ€distributed hybrid voltage regulation of power distribution networks based on power inverters. IET Generation, Transmission and Distribution, 2019, 13, 444-451.	1.4	41
16	The Role of Experimental Test Beds for the Systems Testing of Future Marine Electrical Power Systems. , 2019, , .		1
17	Artificial-Intelligence Method for the Derivation of Generic Aggregated Dynamic Equivalent Models. IEEE Transactions on Power Systems, 2019, 34, 2947-2956.	4.6	42
18	Power Hardware-in-the-Loop Setup for Developing, Analyzing and Testing Mode Identification Techniques and Dynamic Equivalent Models. , 2019, , .		1

#	Article	IF	Citations
19	Enhanced load frequency control: incorporating locational information for temporal enhancement. IET Generation, Transmission and Distribution, 2019, 13, 1865-1874.	1.4	11
20	A Novel Decentralized Responsibilizing Primary Frequency Control. IEEE Transactions on Power Systems, 2018, 33, 3199-3201.	4.6	18
21	Tuningless Load Frequency Control Through Active Engagement of Distributed Resources. IEEE Transactions on Power Systems, 2018, 33, 2929-2939.	4.6	29
22	Systems Level Validation of a Distributed Frequency Control Algorithm., 2018,,.		2
23	Multi-Agent System with Plug and Play Feature for Distributed Secondary Control in Microgrid—Controller and Power Hardware-in-the-Loop Implementation. Energies, 2018, 11, 3253.	1.6	29
24	Initialization and Synchronization of Power Hardware-In-The-Loop Simulations: A Great Britain Network Case Study. Energies, 2018, 11, 1087.	1.6	11
25	Analysis of Responsibilization within Primary Frequency Control. , 2018, , .		2
26	Simulation-Based Validation of Smart Grids – Status Quo and Future Research Trends. Lecture Notes in Computer Science, 2017, , 171-185.	1.0	33
27	Laboratory infrastructure driven key performance indicator development using the smart grid architecture model. CIRED - Open Access Proceedings Journal, 2017, 2017, 1866-1870.	0.1	2
28	Development of measurement-based load models for the dynamic simulation of distribution grids. , 2017, , .		1
29	Controller HIL testing of real-time distributed frequency control for future power systems. , 2016, , .		4
30	Harmonic-by-harmonic time delay compensation method for PHIL simulation of low impedance power systems. , 2015 , , .		14
31	A new control method for the power interface in power hardware-in-the-loop simulation to compensate for the time delay. , 2014, , .		22