Bing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3723437/publications.pdf

Version: 2024-02-01

109137 123241 4,231 92 35 61 h-index citations g-index papers 92 92 92 3389 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environmental Pollution, 2021, 273, 116448.	3.7	382
2	Recent advances in engineered biochar productions and applications. Critical Reviews in Environmental Science and Technology, 2017, 47, 2158-2207.	6.6	318
3	Alginate-based composites for environmental applications: a critical review. Critical Reviews in Environmental Science and Technology, 2019, 49, 318-356.	6.6	253
4	Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere, 2015, 138, 120-126.	4.2	206
5	Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH. Science of the Total Environment, 2018, 634, 188-194.	3.9	138
6	Reclaiming phosphorus from secondary treated municipal wastewater with engineered biochar. Chemical Engineering Journal, 2019, 362, 460-468.	6.6	136
7	Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd(II). Journal of Industrial and Engineering Chemistry, 2018, 61, 161-168.	2.9	116
8	Phosphogypsum as a novel modifier for distillers grains biochar removal of phosphate from water. Chemosphere, 2020, 238, 124684.	4.2	97
9	Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer. Science of the Total Environment, 2021, 758, 143664.	3.9	97
10	Enhanced removal of hexavalent chromium by engineered biochar composite fabricated from phosphogypsum and distillers grains. Science of the Total Environment, 2019, 697, 134119.	3.9	93
11	Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: A review. Science of the Total Environment, 2021, 767, 145305.	3.9	89
12	Application of Heterogeneous Catalytic Ozonation for Refractory Organics in Wastewater. Catalysts, 2019, 9, 241.	1.6	88
13	Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms. Environmental Pollution, 2020, 265, 115001.	3.7	83
14	Novel biochar-impregnated calcium alginate beads with improved water holding and nutrient retention properties. Journal of Environmental Management, 2018, 209, 105-111.	3.8	81
15	Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: A review. Resources, Conservation and Recycling, 2021, 164, 105204.	5.3	80
16	Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(<scp>ii</scp>) and Cd(<scp>ii</scp>) removal. RSC Advances, 2016, 6, 24314-24319.	1.7	73
17	Comparative study of calcium alginate, ball-milled biochar, and their composites on aqueousÂmethylene blue adsorption. Environmental Science and Pollution Research, 2019, 26, 11535-11541.	2.7	72
18	Simultaneous reclaiming phosphate and ammonium from aqueous solutions by calcium alginate-biochar composite: Sorption performance and governing mechanisms. Chemical Engineering Journal, 2022, 429, 132166.	6.6	69

#	Article	IF	CITATIONS
19	Application of biochar immobilized microorganisms for pollutants removal from wastewater: A review. Science of the Total Environment, 2022, 837, 155563.	3.9	67
20	Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times. RSC Advances, 2016, 6, 41907-41913.	1.7	63
21	Bovine Milk Oligosaccharides with Sialyllactose Improves Cognition in Preterm Pigs. Nutrients, 2019, 11, 1335.	1.7	60
22	Preparation of MgO nanocrystals and catalytic mechanism on phenol ozonation. RSC Advances, 2017, 7, 43464-43473.	1.7	59
23	Impregnation of multiwall carbon nanotubes in alginate beads dramatically enhances their adsorptive ability to aqueous methylene blue. Chemical Engineering Research and Design, 2018, 133, 235-242.	2.7	55
24	Co-adsorption performance and mechanism of nitrogen and phosphorus onto eupatorium adenophorum biochar in water. Bioresource Technology, 2021, 340, 125696.	4.8	55
25	Adsorption of Polycyclic Aromatic Hydrocarbons from aqueous solution by Organic Montmorillonite Sodium Alginate Nanocomposites. Chemosphere, 2020, 251, 126074.	4.2	53
26	Biochar as a potential strategy for remediation of contaminated mining soils: Mechanisms, applications, and future perspectives. Journal of Environmental Management, 2022, 313, 114973.	3.8	53
27	Environmental behaviors and degradation methods of microplastics in different environmental media. Chemosphere, 2022, 299, 134354.	4.2	51
28	Enhanced removal of Cd2+ from water by AHP-pretreated biochar: Adsorption performance and mechanism. Journal of Hazardous Materials, 2022, 438, 129467.	6.5	50
29	Enhanced removal of ammonium from water by ball-milled biochar. Environmental Geochemistry and Health, 2020, 42, 1579-1587.	1.8	44
30	Adsorption of acetone and cyclohexane onto CO2 activated hydrochars. Chemosphere, 2020, 245, 125664.	4.2	43
31	Immobilization of heavy metals (Cd, Zn, and Pb) in different contaminated soils with swine manure biochar. Environmental Pollutants and Bioavailability, 2021, 33, 55-65.	1.3	42
32	Nano-biochar: A novel solution for sustainable agriculture and environmental remediation. Environmental Research, 2022, 210, 112891.	3.7	41
33	A Review on Ultrasonic Catalytic Microbubbles Ozonation Processes: Properties, Hydroxyl Radicals Generation Pathway and Potential in Application. Catalysts, 2019, 9, 10.	1.6	39
34	Hydrothermal carbonization of distillers grains with clay minerals for enhanced adsorption of phosphate and methylene blue. Bioresource Technology, 2021, 340, 125725.	4.8	39
35	Facile synthesis of sodium lignosulfonate/polyethyleneimine/sodium alginate beads with ultra-high adsorption capacity for Cr(VI) removal from water. Journal of Hazardous Materials, 2022, 436, 129270.	6.5	38
36	Modified nanoscale zero-valent iron in persulfate activation for organic pollution remediation: a review. Environmental Science and Pollution Research, 2021, 28, 34229-34247.	2.7	37

#	Article	IF	CITATIONS
37	Fabrication and environmental applications of metal-containing solid waste/biochar composites: A review. Science of the Total Environment, 2021, 799, 149295.	3.9	37
38	MOF-derived M-OOH with rich oxygen defects by <i>in situ</i> electro-oxidation reconstitution for a highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 11415-11426.	5.2	34
39	Removal performance, mechanisms, and influencing factors of biochar for air pollutants: a critical review. Biochar, 2022, 4, .	6.2	32
40	Characterization of porcine milk oligosaccharides over lactation between primiparous and multiparous female pigs. Scientific Reports, 2018, 8, 4688.	1.6	31
41	Chemical characterization in hydraulic fracturing flowback and produced water (HF-FPW) of shale gas in Sichuan of China. Environmental Science and Pollution Research, 2020, 27, 26532-26542.	2.7	31
42	Developmental changes in the level of free and conjugated sialic acids, Neu5Ac, Neu5Gc and KDN in different organs of pig: a LC-MS/MS quantitative analyses. Glycoconjugate Journal, 2017, 34, 21-30.	1.4	27
43	Distinct patterns of chemical weathering in the drainage basins of the Huanghe and Xijiang River, China: Evidence from chemical and Sr-isotopic compositions. Journal of Asian Earth Sciences, 2012, 59, 219-230.	1.0	26
44	Current Perspective of Sialylated Milk Oligosaccharides in Mammalian Milk: Implications for Brain and Gut Health of Newborns. Foods, 2021, 10, 473.	1.9	25
45	Impacts of straw biochar additions on agricultural soil quality and greenhouse gas fluxes in karst area, Southwest China. Soil Science and Plant Nutrition, 2016, 62, 526-533.	0.8	24
46	Selective adsorption behavior and mechanism of phosphate in water by different lanthanum modified biochar. Journal of Environmental Chemical Engineering, 2022, 10, 107476.	3.3	24
47	Treatment of overhaul wastewater containing N-methyldiethanolamine (MDEA) through modified Fe–C microelectrolysis-configured ozonation: Investigation on process optimization and degradation mechanisms. Journal of Hazardous Materials, 2019, 369, 655-664.	6.5	23
48	Dietary lactoferrin supplementation to gilts during gestation and lactation improves pig production and immunity. PLoS ONE, 2017, 12, e0185817.	1.1	23
49	Biochar addition can reduce NOx gas emissions from a calcareous soil. Environmental Pollutants and Bioavailability, 2019, 31, 38-48.	1.3	21
50	Sulfur defect rich Mo-Ni ₃ S ₂ QDs assisted by O–Cî€O chemical bonding for an efficient electrocatalytic overall water splitting. Nanoscale, 2021, 13, 6644-6653.	2.8	21
51	Activation Strategy of WS ₂ as an Efficient Photocatalytic Hydrogen Evolution Cocatalyst through Co ²⁺ Doping to Adjust the Highly Exposed Active (100) Facet. Solar Rrl, 2021, 5, 2100223.	3.1	21
52	Release characteristics of phosphate from ball-milled biochar and its potential effects on plant growth. Science of the Total Environment, 2022, 821, 153256.	3.9	21
53	Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil. Environmental Geochemistry and Health, 2017, 39, 635-647.	1.8	20
54	Recent advances in the treatment of contaminated soils by ball milling technology: Classification, mechanisms, and applications. Journal of Cleaner Production, 2022, 340, 130821.	4.6	20

#	Article	IF	CITATIONS
55	Sialylated milk oligosaccharides alter neurotransmitters and brain metabolites in piglets: an <i>In vivo</i> magnetic resonance spectroscopic (MRS) study. Nutritional Neuroscience, 2021, 24, 885-895.	1.5	19
56	Research of combined adsorption-coagulation process in treating petroleum refinery effluent. Environmental Technology (United Kingdom), 2017, 38, 456-466.	1.2	18
57	Effects of biochar properties on the bioremediation of the petroleum-contaminated soil from a shale-gas field. Environmental Science and Pollution Research, 2020, 27, 36427-36438.	2.7	18
58	Identification and quantification of contributions to karst groundwater using a triple stable isotope labeling and mass balance model. Chemosphere, 2021, 263, 127946.	4.2	18
59	Visible light-driven fluoroalkylthiocyanation of alkenes <i>via</i> electron donor–acceptor complexes. Organic Chemistry Frontiers, 2021, 8, 3076-3081.	2.3	18
60	Removal of organic pollutants by effluent recirculation constructed wetlands system treating landfill leachate. Environmental Technology and Innovation, 2021, 24, 101843.	3.0	18
61	Changes in above- and below-ground nitrogen stocks and allocations following the conversion of farmland to forest in rocky desertification regions. Agriculture, Ecosystems and Environment, 2016, 232, 9-16.	2.5	17
62	Insights into Cr(VI) removal mechanism in water by facile one-step pyrolysis prepared coal gangue-biochar composite. Chemosphere, 2022, 299, 134334.	4.2	17
63	Effects of long-term zinc smelting activities on the distribution and health risk of heavy metals in agricultural soils of Guizhou province, China. Environmental Geochemistry and Health, 2023, 45, 5639-5654.	1.8	16
64	Stabilization of heavy metals in biochar derived from plants in antimony mining area and its environmental implications. Environmental Pollution, 2022, 300, 118902.	3.7	16
65	Effective Sb(V) removal from aqueous solution using phosphogypsum-modified biochar. Environmental Pollution, 2022, 301, 119032.	3.7	16
66	Degradation of MDEA in aqueous solution in the thermally activated persulfate system. Environmental Technology (United Kingdom), 2017, 38, 730-736.	1.2	15
67	Preparation, characterization and flocculation performance of the inorganic–organic composite coagulant polyferric chloride and polydimethyldiallylammonium chloride. Journal of Chemical Technology and Biotechnology, 2017, 92, 884-892.	1.6	14
68	Adsorption behavior and performance of ammonium onto sorghum straw biochar from water. Scientific Reports, 2022, 12, 5358.	1.6	14
69	Nutrient stability and sorption of sewage sludge biochar prepared from co-pyrolysis of sewage sludge and stalks / mineral materials. Environmental Pollutants and Bioavailability, 2020, 32, 12-18.	1.3	13
70	3Dâ€Stretched Film Ni ₃ S ₂ Nanosheet/Macromolecule Anthraquinone Derivative Polymers for Electrocatalytic Overall Water Splitting. Small, 2021, 17, e2101003.	5.2	13
71	Photocatalytic degradation of sulfamonomethoxine by mesoporous phosphorus-doped titania under simulated solar light irradiation. Chemosphere, 2021, 285, 131553.	4.2	13
72	Maternal chitosan oligosaccharide intervention optimizes the production performance and health status of gilts and their offspring. Animal Nutrition, 2020, 6, 134-142.	2.1	12

#	Article	IF	Citations
73	Phosphorus-modified biochar cross-linked Mg-Al layered double-hydroxide stabilizer reduced U and Pb uptake by Indian mustard (Brassica juncea L.) in uranium contaminated soil. Ecotoxicology and Environmental Safety, 2022, 234, 113363.	2.9	12
74	Molecular Mechanisms Underlying How Sialyllactose Intervention Promotes Intestinal Maturity by Upregulating GDNF Through a CREB-Dependent Pathway in Neonatal Piglets. Molecular Neurobiology, 2019, 56, 7994-8007.	1.9	11
75	Removal of organochlorine pesticides and metagenomic analysis by multi-stage constructed wetland treating landfill leachate. Chemosphere, 2022, 301, 134761.	4.2	11
76	Nitrogen removal performance and microbiological characteristics for the landfill leachate treatment in a three-stage vertical flow constructed wetlands system. Environmental Technology and Innovation, 2022, 28, 102728.	3.0	11
77	Functional Correlates and Impact of Dietary Lactoferrin Intervention and its Concentrationâ€dependence on Neurodevelopment and Cognition in Neonatal Piglets. Molecular Nutrition and Food Research, 2021, 65, e2001099.	1.5	10
78	Pyrolysis temperature and feedstock affected Cr(VI) removal capacity of sulfidated zerovalent iron: Importance of surface area and electrical conductivity. Chemosphere, 2022, 296, 133927.	4.2	10
79	Remediation potential of immobilized bacterial strain with biochar as carrier in petroleum hydrocarbon and Ni co-contaminated soil. Environmental Technology (United Kingdom), 2022, 43, 1068-1081.	1.2	9
80	Accumulation and transport of antimony and arsenic in terrestrial and aquatic plants in an antimony ore concentration area (south-west China). Environmental Chemistry, 2020, 17, 314.	0.7	9
81	Physical separation of catalytic oxidation and reduction sites onto photocatalyst assisted by surface functional groups for enhanced hydrogen evolution. Journal of Cleaner Production, 2021, 324, 129259.	4.6	8
82	Biochemical Characterization and Analyses of Polysialicâ€Acidâ€Associated Carrier Proteins and Genes in Piglets during Neonatal Development. ChemBioChem, 2017, 18, 1270-1278.	1.3	5
83	Variation of Soil Organic Carbon and Its Major Constraints in East Central Asia. PLoS ONE, 2016, 11, e0150709.	1.1	5
84	Diurnal and spatial variations of soil NOx fluxes in the northern steppe of China. Journal of Environmental Sciences, 2015, 32, 54-61.	3.2	4
85	2-Keto-L-Gulonic Acid Improved the Salt Stress Resistance of Non-heading Chinese Cabbage by Increasing L-Ascorbic Acid Accumulation. Frontiers in Plant Science, 2021, 12, 697184.	1.7	4
86	Study on the Effect of Petroleum Components on the Elution of Oily Sludge by a Compound Biosurfactant. Langmuir, 2022, 38, 2026-2037.	1.6	4
87	Process intensification of the ozone-liquid mass transfer in ultrasonic cavitation-rotational flow interaction coupled-field: Optimization and application. Journal of Environmental Management, 2022, 310, 114710.	3.8	4
88	Nitrous oxide emissions from different land use patterns in a typical karst region, Southwest China. Diqiu Huaxue, 2013, 32, 137-145.	0.5	3
89	Systematic Analysis of the Biochemical Characteristics of Activated Sludge During Ozonation for Lowering of Biomass Production. Ozone: Science and Engineering, 2017, 39, 80-90.	1.4	3
90	The Potential for Sialic Acid and Sialylated Glycoconjugates as Feed Additives to Enhance Pig Health and Production. Animals, 2021, 11, 2318.	1.0	1

#	Article	IF	CITATIONS
91	Characterization and nutritional value of hydrothermal liquid products from distillers grains. Journal of Environmental Management, 2022, 316, 115275.	3.8	1
92	Catalytic liquefaction of sewage sludge to small molecular weight chemicals. Scientific Reports, 2020, 10, 18929.	1.6	0