Joseph J Pignatello

List of Publications by Citations

Source: https://exaly.com/author-pdf/3723090/joseph-j-pignatello-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

132 129 17,995 59 h-index g-index citations papers 19,690 8.5 132 7.07 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
129	Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. <i>Critical Reviews in Environmental Science and Technology</i> , 2006 , 36, 1-84	11.1	2535
128	Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles. <i>Environmental Science & Environmental Science</i>	10.3	1389
127	Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. <i>Environmental Science & Environmental Science</i>	10.3	996
126	Sequestration of Hydrophobic Organic Contaminants by Geosorbents. <i>Environmental Science & Environmental Science & Technology</i> , 1997 , 31, 3341-3347	10.3	853
125	Dual-Mode Sorption of Low-Polarity Compounds in Glassy Poly(Vinyl Chloride) and Soil Organic Matter. <i>Environmental Science & Environmental Science & </i>	10.3	658
124	Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). <i>Environmental Science & amp; Technology</i> , 2014 , 48, 2344-51	10.3	546
123	Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. <i>Environmental Science & Environmental Science & Envi</i>	2-8 ^{0.3}	516
122	Photochemical reactions involved in the total mineralization of 2,4-D by iron(3+)/hydrogen peroxide/UV. <i>Environmental Science & Environmental Science</i> 27, 304-310	10.3	500
121	Role of Quinone Intermediates as Electron Shuttles in Fenton and Photoassisted Fenton Oxidations of Aromatic Compounds. <i>Environmental Science & Environmental Science & Envir</i>	10.3	497
120	Competitive Sorption between Atrazine and Other Organic Compounds in Soils and Model Sorbents. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	463
119	Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores. <i>Environmental Science & Environmental Scie</i>	10.3	427
118	Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. <i>Environmental Science & Environmental Science & Env</i>	10.3	339
117	Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). <i>Environmental Science & Environmental Scienc</i>	10.3	336
116	Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. <i>Environmental Science & Environmental Science</i>	10.3	332
115	Evidence for an Additional Oxidant in the Photoassisted Fenton Reaction. <i>Environmental Science & Environmental Science & Envi</i>	10.3	319
114	Oxidation of Organic Compounds in Water by Unactivated Peroxymonosulfate. <i>Environmental Science & Environmental Science & Env</i>	10.3	306
113	Sorption hysteresis of benzene in charcoal particles. <i>Environmental Science & Environmental Science &</i>	10.3	282

(2005-1999)

112	Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction. <i>Water Research</i> , 1999 , 33, 1238-1246	12.5	271
111	Chemical treatment of pesticide wastes. Evaluation of iron(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH. <i>Journal of Agricultural and Food Chemistry</i> , 1992 , 40, 322-327	5.7	244
110	Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions. <i>Environmental Science & Environmental & Environment</i>	10.3	222
109	Evidence for pi-pi electron donor-acceptor interactions between pi-donor aromatic compounds and pi-acceptor sites in soil organic matter through pH effects on sorption. <i>Environmental Science & Environmental Science</i>	10.3	214
108	Elution of aged and freshly added herbicides from a soil. <i>Environmental Science & Environmental Scien</i>	10.3	189
107	Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): pseudo pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents. <i>Environmental Science & Description (Char)</i> : 2005, 2005	10.3	169
106	Effect of matrix components on UV/H2O2 and UV/S2O8(2-) advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. <i>Water Research</i> , 2016 , 89, 192-200	12.5	168
105	Characterization of charcoal adsorption sites for aromatic compounds: insights drawn from single-solute and bi-solute competitive experiments. <i>Environmental Science & Discounty (Content of the Science & Discou</i>	10.3	165
104	Effect of Biochar Amendments on Mycorrhizal Associations and Fusarium Crown and Root Rot of Asparagus in Replant Soils. <i>Plant Disease</i> , 2011 , 95, 960-966	1.5	160
103	Detailed sorption isotherms of polar and apolar compounds in a high-organic soil. <i>Environmental Science & Environmental Scien</i>	10.3	157
102	Demonstration of the "conditioning effect" in soil organic matter in support of a pore deformation mechanism for sorption hysteresis. <i>Environmental Science & Environmental S</i>	10.3	155
101	Sorptive Reversibility of Atrazine and Metolachlor Residues in Field Soil Samples. <i>Journal of Environmental Quality</i> , 1991 , 20, 222-228	3.4	144
100	Evidence for a surface dual hole-radical mechanism in the titanium dioxide photocatalytic oxidation of 2,4-D. <i>Environmental Science & Environmental S</i>	10.3	140
99	Activity and Reactivity of Pyrogenic Carbonaceous Matter toward Organic Compounds. <i>Environmental Science & Environmental Scie</i>	10.3	137
98	Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II). <i>Water Research</i> , 2009 , 43, 2409-18	12.5	124
97	Competitive Sorption between 1,3-Dichlorobenzene or 2,4-Dichlorophenol and Natural Aromatic Acids in Soil Organic Matter. <i>Environmental Science & Environmental Science & Env</i>	10.3	124
96	Role of black carbon electrical conductivity in mediating hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) transformation on carbon surfaces by sulfides. <i>Environmental Science & Environmental Science </i>	10.3	123
95	A thermodynamically based method to quantify true sorption hysteresis. <i>Journal of Environmental Quality</i> , 2005 , 34, 1063-72	3.4	119

94	Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars. <i>Environmental Science & Environmental Scien</i>	10.3	114
93	Sorbic acid as a quantitative probe for the formation, scavenging and steady-state concentrations of the triplet-excited state of organic compounds. <i>Water Research</i> , 2011 , 45, 6535-44	12.5	114
92	Complete oxidation of metolachlor and methyl parathion in water by the photoassisted Fenton reaction. <i>Water Research</i> , 1995 , 29, 1837-1844	12.5	114
91	Adsorption of aromatic carboxylate ions to black carbon (biochar) is accompanied by proton exchange with water. <i>Environmental Science & Environmental & Envir</i>	10.3	109
90	Activation of hydrogen peroxide by iron(III) chelates for abiotic degradation of herbicides and insecticides in water. <i>Journal of Agricultural and Food Chemistry</i> , 1993 , 41, 308-312	5.7	108
89	Characterization of Wood Chars Produced at Different Temperatures Using Advanced Solid-State 13C NMR Spectroscopic Techniques. <i>Energy & Energy & E</i>	4.1	106
88	Interactions of triazine herbicides with biochar: Steric and electronic effects. <i>Water Research</i> , 2015 , 80, 179-88	12.5	96
87	Sorption of apolar aromatic compounds to soil humic acid particles affected by aluminum(III) ion Cross-Linking. <i>Journal of Environmental Quality</i> , 2004 , 33, 1314-21	3.4	88
86	Predicting contaminant adsorption in black carbon (biochar)-amended soil for the veterinary antimicrobial sulfamethazine. <i>Environmental Science & Environmental Science & Env</i>	10.3	86
85	Influence of ionic strength on triplet-state natural organic matter loss by energy transfer and electron transfer pathways. <i>Environmental Science & Description (2013)</i> , 47, 10987-94	10.3	84
84	(+)-Interactions between (hetero)aromatic amine cations and the graphitic surfaces of pyrogenic carbonaceous materials. <i>Environmental Science & Environmental & Environmental</i>	10.3	81
83	Degradation of p-Nitrophenol by Lignin and Cellulose Chars: HO-Mediated Reaction and Direct Reaction with the Char. <i>Environmental Science & Environmental Science & Environme</i>	10.3	80
82	Formation of pi-pi complexes between phenanthrene and model pi-acceptor humic subunits. Journal of Environmental Quality, 2004 , 33, 265-75	3.4	80
81	Degradation and detoxification of the wood preservatives creosote and pentachlorophenol in water by the photo-Fenton reaction. <i>Water Research</i> , 1999 , 33, 1151-1158	12.5	80
80	Ferric Complexes as Catalysts for Henton Degradation of 2,4-D and Metolachlor in Soil. <i>Journal of Environmental Quality</i> , 1994 , 23, 365-370	3.4	79
79	Influence of Bisolute Competition on the Desorption Kinetics of Polycyclic Aromatic Hydrocarbons in Soil. <i>Environmental Science & amp; Technology</i> , 1999 , 33, 4292-4298	10.3	75
78	Impact of halide ions on natural organic matter-sensitized photolysis of 17Eestradiol in saline waters. <i>Environmental Science & Environmental Science</i>	10.3	71
77	Nonlinear and competitive sorption of apolar compounds in black carbon-free natural organic materials. <i>Journal of Environmental Quality</i> , 2006 , 35, 1049-59	3.4	71

76	Reduction of Perchloroalkanes by Ferrioxalate-Generated Carboxylate Radical Preceding Mineralization by the Photo-Fenton Reaction. <i>Environmental Science & Environmental Scie</i>	3 4 63	70
75	Effects of Post-Pyrolysis Air Oxidation of Biomass Chars on Adsorption of Neutral and Ionizable Compounds. <i>Environmental Science & Environmental Environm</i>	10.3	68
74	Heteroaggregation of Cerium Oxide Nanoparticles and Nanoparticles of Pyrolyzed Biomass. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	64
73	Aversive responses of white-tailed deer,Odocoileus virginianus, to predator urines. <i>Journal of Chemical Ecology</i> , 1991 , 17, 767-77	2.7	63
72	Impact of halides on the photobleaching of dissolved organic matter. <i>Marine Chemistry</i> , 2009 , 115, 134-	13 14	62
71	The Measurement and Interpretation of Sorption and Desorption Rates for Organic Compounds in Soil Media. <i>Advances in Agronomy</i> , 1999 , 69, 1-73	7.7	62
7º	Environmental fate of the fungicide metalaxyl in soil amended with composted olive-mill waste and its biochar: An enantioselective study. <i>Science of the Total Environment</i> , 2016 , 541, 776-783	10.2	58
69	History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter. <i>Environmental Science & Environmental Science & Environ</i>	10.3	58
68	Conditioning-annealing studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion. <i>Environmental Science & Environmental Sci</i>	10.3	57
67	Organic intermediates in the degradation of 2,4-dichlorophenoxyacetic acid by iron(3+)/hydrogen peroxide and iron(3+)/hydrogen peroxide/UV. <i>Journal of Agricultural and Food Chemistry</i> , 1993 , 41, 1139	5 ₁ 7 ₁ 42	55
66	Sunlight-driven photochemical halogenation of dissolved organic matter in seawater: a natural abiotic source of organobromine and organoiodine. <i>Environmental Science & Environmental & Envir</i>	10.3	54
65	Reduction of nitroaromatics sorbed to black carbon by direct reaction with sorbed sulfides. <i>Environmental Science & amp; Technology</i> , 2015 , 49, 3419-26	10.3	53
64	Advanced solid-state NMR characterization of marine dissolved organic matter isolated using the coupled reverse osmosis/electrodialysis method. <i>Environmental Science & Environmental Science & Envir</i>	10.3	51
63	An isotope exchange technique to assess mechanisms of sorption hysteresis applied to naphthalene in kerogenous organic matter. <i>Environmental Science & Environmental Science </i>	10.3	51
62	Dynamic interactions of natural organic matter and organic compounds. <i>Journal of Soils and Sediments</i> , 2012 , 12, 1241-1256	3.4	50
61	Dual-mode modeling of competitive and concentration-dependent sorption and desorption kinetics of polycyclic aromatic hydrocarbons in soils. <i>Water Resources Research</i> , 2001 , 37, 2205-2212	5.4	50
60	A concentration-dependent multi-term linear free energy relationship for sorption of organic compounds to soils based on the hexadecane dilute-solution reference state. <i>Environmental Science & Environmental Science</i>	10.3	48
59	Bioacessibility of PAHs in fuel soot assessed by an in vitro digestive model: effect of including an absorptive sink. <i>Environmental Science & Environmental Science & Environ</i>	10.3	45

58	Competitive sorption used to probe strong hydrogen bonding sites for weak organic acids on carbon nanotubes. <i>Environmental Science & Environmental Sc</i>	10.3	45
57	Exposure of agricultural crops to nanoparticle CeO in biochar-amended soil. <i>Plant Physiology and Biochemistry</i> , 2017 , 110, 147-157	5.4	43
56	Effect of solute concentration on sorption of polyaromatic hydrocarbons in soil: uptake rates. <i>Environmental Science & Environmental </i>	10.3	43
55	New insight into adsorption mechanism of ionizable compounds on carbon nanotubes. <i>Environmental Science & Environmental Scien</i>	10.3	41
54	Model-aided characterization of Tenax-TA for aromatic compound uptake from water. Environmental Toxicology and Chemistry, 2004 , 23, 1592-9	3.8	40
53	On the reversibility of sorption to black carbon: distinguishing true hysteresis from artificial hysteresis caused by dilution of a competing adsorbate. <i>Environmental Science & amp; Technology</i> , 2007 , 41, 843-9	10.3	38
52	Peroxymonosulfate Oxidizes Amino Acids in Water without Activation. <i>Environmental Science & Environmental Science</i>	10.3	37
51	Participation of the Halogens in Photochemical Reactions in Natural and Treated Waters. <i>Molecules</i> , 2017 , 22,	4.8	36
50	Thermal air oxidation changes surface and adsorptive properties of black carbon (char/biochar). <i>Science of the Total Environment</i> , 2018 , 618, 276-283	10.2	35
49	Field-observed ethylene dibromide in an aquifer after two decades. <i>Journal of Contaminant Hydrology</i> , 1990 , 5, 195-214	3.9	34
48	Bioaccessibility of PAHs in Fuel Soot Assessed by an in Vitro Digestive Model with Absorptive Sink: Effect of Food Ingestion. <i>Environmental Science & Environmental & Environ</i>	10.3	32
47	Laboratory Tests of Biochars as Absorbents for Use in Recovery or Containment of Marine Crude Oil Spills. <i>Environmental Engineering Science</i> , 2013 , 30, 374-380	2	32
46	Sorption irreversibility of 1,4-dichlorobenzene in two natural organic matter-rich geosorbents. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 447-57	3.8	31
45	Evidence of micropore filling for sorption of nonpolar organic contaminants by condensed organic matter. <i>Journal of Environmental Quality</i> , 2013 , 42, 806-14	3.4	30
44	Effect of adsorption nonlinearity on the pH-adsorption profile of ionizable organic compounds. <i>Langmuir</i> , 2014 , 30, 1994-2001	4	28
43	Characterization of oil shale, isolated kerogen, and postpyrolysis residues using advanced 13C solid-state nuclear magnetic resonance spectroscopy. <i>AAPG Bulletin</i> , 2013 , 97, 421-436	2.5	26
42	Active removal of biochar by earthworms (Lumbricus terrestris). <i>Pedobiologia</i> , 2015 , 58, 1-6	1.7	23
41	Sorption selectivity in natural organic matter studied with nitroxyl paramagnetic relaxation probes. <i>Environmental Science & Environmental Science & </i>	10.3	21

40	Ethylene Dibromide Mineralization in Soils under Aerobic Conditions. <i>Applied and Environmental Microbiology</i> , 1986 , 51, 588-92	4.8	21
39	Surface Interactions between Gold Nanoparticles and Biochar. Scientific Reports, 2017, 7, 5027	4.9	19
38	Bioaccumulation of CeO Nanoparticles by Earthworms in Biochar-Amended Soil: A Synchrotron Microspectroscopy Study. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 6609-6618	5.7	18
37	Sorption selectivity in natural organic matter probed with fully deuterium-exchanged and carbonyl-13C-labeled benzophenone and 1H-13C NMR spectroscopy. <i>Environmental Science & Environmental Science & Technology</i> , 2014 , 48, 8645-52	10.3	18
36	Synthesis and application of a quaternary phosphonium polymer coagulant to avoid N-nitrosamine formation. <i>Environmental Science & Environmental Scien</i>	10.3	18
35	Modification of pyrogenic carbons for phosphate sorption through binding of a cationic polymer. Journal of Colloid and Interface Science, 2020 , 579, 258-268	9.3	16
34	Pignatello and Xing's Comment on E valuation of the Glassy/Rubbery Model for Soil Organic Matter[] <i>Environmental Science & amp; Technology</i> , 1999 , 33, 2837-2838	10.3	16
33	Improved Extraction of Atrazine and Metolachlor in Field Soil Samples. <i>Journal of the Association of Official Analytical Chemists</i> , 1990 , 73, 443-446		16
32	Microbial Degradation of 1,2-Dibromoethane in Shallow Aquifer Materials. <i>Journal of Environmental Quality</i> , 1987 , 16, 307-312	3.4	16
31	Reoxidation of photoreduced polyoxotungstate ([PW12O40](4-)) by different oxidants in the presence of a model pollutant. Kinetics and reaction mechanism. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 1055-65	2.8	14
30	Sources, interactions, and ecological impacts of organic contaminants in water, soil, and sediment: an introduction to the special series. <i>Journal of Environmental Quality</i> , 2010 , 39, 1133-8	3.4	14
29	Activation of Hydrogen Peroxide and Solid Peroxide Reagents by Phosphate Ion in Alkaline Solution. <i>Environmental Engineering Science</i> , 2016 , 33, 193-199	2	13
28	Adsorption and desorption of nitrous oxide by raw and thermally air-oxidized chars. <i>Science of the Total Environment</i> , 2018 , 643, 1436-1445	10.2	13
27	Catalytic oxidation for elimination of methyl bromide fumigation emissions using ceria-based catalysts. <i>Applied Catalysis B: Environmental</i> , 2013 , 142-143, 785-794	21.8	13
26	Bioaccessibility of PAHs and PAH derivatives in a fuel soot assessed by an in vitro digestive model with absorptive sink: Effects of aging the soot in a soil-water mixture. <i>Science of the Total Environment</i> , 2018 , 615, 169-176	10.2	12
25	The Fenton Reaction in Water Assisted by Picolinic Acid: Accelerated Iron Cycling and Co-generation of a Selective Fe-Based Oxidant. <i>Environmental Science & Environmental Sc</i>	9 ⁻¹ 8308	12
24	Bioaccessibility of nitro- and oxy-PAHs in fuel soot assessed by an inditro digestive model with absorptive sink. <i>Environmental Pollution</i> , 2016 , 218, 901-908	9.3	11
23	Preparation and characterization of humic acid cross-linked with organic bridging groups. <i>Organic Geochemistry</i> , 2012 , 47, 132-138	3.1	11

22	An Approach for Incorporating Information on Chemical Availability in Soils into Risk Assessment and Risk-Based Decision Making, Prepared by: The New England Environmentally Acceptable Endpoints Workgroup. <i>Human and Ecological Risk Assessment (HERA)</i> , 2000 , 6, 479-510	4.9	10
21	Structure-activity correlations among analogs of 4-methyl-3-heptanol, a pheromone component of the european elm bark beetle (Scolytus multistriatus). <i>Journal of Chemical Ecology</i> , 1983 , 9, 615-43	2.7	10
20	Adsorption of Organic Compounds by Biomass Chars: Direct Role of Aromatic Condensation (Ring Cluster Size) Revealed by Experimental and Theoretical Studies. <i>Environmental Science & Environmental Science & Technology</i> , 2021 , 55, 1594-1603	10.3	10
19	Activated carbon-mediated base hydrolysis of alkyl bromides. <i>Applied Catalysis B: Environmental</i> , 2017 , 211, 68-78	21.8	9
18	Response to Comment on Competitive Sorption between Atrazine and Other Organic Compounds in Soils and Model Sorbents [Environmental Science & Technology, 1997, 31, 1578-1579]	10.3	9
17	Revisiting the phenanthroline and ferrozine colorimetric methods for quantification of Fe(II) in Fenton reactions. <i>Chemical Engineering Journal</i> , 2020 , 391, 123592	14.7	9
16	ISOT_Calc: A versatile tool for parameter estimation in sorption isotherms. <i>Computers and Geosciences</i> , 2016 , 94, 11-17	4.5	8
15	Autoxidation of transition-metal complexes. Reaction of a 1:1 cobalt-molecular oxygen complex with acids to yield hydrogen peroxide. Kinetics and mechanism. <i>Journal of the American Chemical Society</i> , 1979 , 101, 5929-5939	16.4	8
14	Bioavailability of Contaminants in Soil. Soil Biology, 2009, 35-71	1	8
13	Reaction of Substituted Phenols with Lignin Char: Dual Oxidative and Reductive Pathways Depending on Substituents and Conditions. <i>Environmental Science & Environmental Scien</i>	5 ¹ 82ð	8
12	Charge-assisted hydrogen bonding as a cohesive force in soil organic matter: water solubility enhancement by addition of simple carboxylic acids. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 1225-1233	4.3	7
11	Adsorption of Dissolved Organic Compounds by Black Carbon 2013 , 359-385		6
10	Modified carbons for enhanced nucleophilic substitution reactions of adsorbed methyl bromide. <i>Applied Catalysis B: Environmental</i> , 2018 , 233, 281-288	21.8	4
9	Effects of post-pyrolysis air oxidation on the chemical composition of biomass chars investigated by solid-state nuclear magnetic resonance spectroscopy. <i>Carbon</i> , 2019 , 153, 173-178	10.4	4
8	Importance of Soil Properties and Processes on Bioavailability of Organic Compounds. <i>Handbook of Environmental Chemistry</i> , 2020 , 7-41	0.8	4
7	Sorption and Mobility of Charged Organic Compounds: How to Confront and Overcome Limitations in Their Assessment <i>Environmental Science & Environmental Science & Environmen</i>	10.3	4
6	Investigation of sorbate-induced plasticization of Pahokee peat by solid-state NMR spectroscopy. Journal of Soils and Sediments, 2016 , 16, 1841-1848	3.4	3
5	Structural Transformation of Biochar Black Carbon by C Superstructure: Environmental Implications. <i>Scientific Reports</i> , 2017 , 7, 11787	4.9	3

LIST OF PUBLICATIONS

4	Evaluation of select biochars and clays as supports for phytase to increase the fertilizer potential of animal wastes. <i>Science of the Total Environment</i> , 2021 , 787, 147720	10.2	1
3	Physicochemical Changes in Biomass Chars by Thermal Oxidation or Ambient Weathering and Their Impacts on Sorption of a Hydrophobic and a Cationic Compound. <i>Environmental Science & Environmental Science & Technology</i> , 2021 , 55, 13072-13081	10.3	1
2	Abatement of Polycyclic Aromatic Hydrocarbon Residues in Biochars by Thermal Oxidation. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 451-456	11	0
1	Application of the dual-mode model for predicting competitive sorption equilibria and rates of polycyclic aromatic hydrocarbons in estuarine sediment suspensions. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 2276-82	3.8	