
David S Sholl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3722793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seven chemical separations to change the world. Nature, 2016, 532, 435-437.	13.7	2,758
2	Can Metal–Organic Framework Materials Play a Useful Role in Large cale Carbon Dioxide Separations?. ChemSusChem, 2010, 3, 879-891.	3.6	556
3	Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals. Chemistry of Materials, 2014, 26, 6185-6192.	3.2	524
4	Chiral selection on inorganic crystalline surfaces. Nature Materials, 2003, 2, 367-374.	13.3	439
5	Self-Diffusion and Transport Diffusion of Light Gases in Metal-Organic Framework Materials Assessed Using Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2005, 109, 15760-15768.	1.2	412
6	Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019. Journal of Chemical & Engineering Data, 2019, 64, 5985-5998.	1.0	372
7	Chemically Meaningful Atomic Charges That Reproduce the Electrostatic Potential in Periodic and Nonperiodic Materials. Journal of Chemical Theory and Computation, 2010, 6, 2455-2468.	2.3	365
8	From water to organics in membrane separations. Nature Materials, 2017, 16, 276-279.	13.3	358
9	Nanoscale design to enable the revolution in renewable energy. Energy and Environmental Science, 2009, 2, 559.	15.6	348
10	Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory. AICHE Journal, 2015, 61, 2757-2762.	1.8	317
11	The materials genome in action: identifying the performance limits for methane storage. Energy and Environmental Science, 2015, 8, 1190-1199.	15.6	314
12	Defects in Metal–Organic Frameworks: Challenge or Opportunity?. Journal of Physical Chemistry Letters, 2015, 6, 3437-3444.	2.1	290
13	Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations. Journal of Membrane Science, 2012, 401-402, 76-82.	4.1	289
14	Progress, Opportunities, and Challenges for Applying Atomically Detailed Modeling to Molecular Adsorption and Transport in Metalâ^'Organic Framework Materials. Industrial & Engineering Chemistry Research, 2009, 48, 2355-2371.	1.8	283
15	Improved Atoms-in-Molecule Charge Partitioning Functional for Simultaneously Reproducing the Electrostatic Potential and Chemical States in Periodic and Nonperiodic Materials. Journal of Chemical Theory and Computation, 2012, 8, 2844-2867.	2.3	282
16	Exploring the Framework Hydrophobicity and Flexibility of ZIF-8: From Biofuel Recovery to Hydrocarbon Separations. Journal of Physical Chemistry Letters, 2013, 4, 3618-3622.	2.1	277
17	Efficient Calculation of Diffusion Limitations in Metal Organic Framework Materials: A Tool for Identifying Materials for Kinetic Separations. Journal of the American Chemical Society, 2010, 132, 7528-7539.	6.6	273
18	Modification of the Mg/DOBDC MOF with Amines to Enhance CO ₂ Adsorption from Ultradilute Gases. Journal of Physical Chemistry Letters, 2012, 3, 1136-1141.	2.1	273

#	Article	IF	CITATIONS
19	Transport Diffusivities of CH4, CF4, He, Ne, Ar, Xe, and SF6 in Silicalite from Atomistic Simulations. Journal of Physical Chemistry B, 2002, 106, 5058-5067.	1.2	211
20	Direct Air Capture of CO ₂ Using Amine Functionalized MIL-101(Cr). ACS Sustainable Chemistry and Engineering, 2016, 4, 5761-5768.	3.2	210
21	Naturally Chiral Metal Surfaces as Enantiospecific Adsorbents. Journal of Physical Chemistry B, 2001, 105, 4771-4782.	1.2	203
22	Accelerating Applications of Metal–Organic Frameworks for Gas Adsorption and Separation by Computational Screening of Materials. Langmuir, 2012, 28, 14114-14128.	1.6	202
23	MATERIALS SCIENCE: Making High-Flux Membranes with Carbon Nanotubes. Science, 2006, 312, 1003-1004.	6.0	195
24	Understanding Macroscopic Diffusion of Adsorbed Molecules in Crystalline Nanoporous Materials via Atomistic Simulations. Accounts of Chemical Research, 2006, 39, 403-411.	7.6	193
25	Highly Tunable Molecular Sieving and Adsorption Properties of Mixed-Linker Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 2015, 137, 4191-4197.	6.6	192
26	Finding MOFs for Highly Selective CO ₂ /N ₂ Adsorption Using Materials Screening Based on Efficient Assignment of Atomic Point Charges. Journal of the American Chemical Society, 2012, 134, 4313-4323.	6.6	187
27	Screening Metalâ^'Organic Framework Materials for Membrane-based Methane/Carbon Dioxide Separations. Journal of Physical Chemistry C, 2007, 111, 14055-14059.	1.5	186
28	Molecular Dynamics Simulations of Self-Diffusivities, Corrected Diffusivities, and Transport Diffusivities of Light Gases in Four Silica Zeolites To Assess Influences of Pore Shape and Connectivity. Journal of Physical Chemistry A, 2003, 107, 10132-10141.	1.1	185
29	Quantifying Large Effects of Framework Flexibility on Diffusion in MOFs: CH ₄ and CO ₂ in ZIFâ€8. ChemPhysChem, 2012, 13, 3449-3452.	1.0	185
30	Role of Amine Structure on Carbon Dioxide Adsorption from Ultradilute Gas Streams such as Ambient Air. ChemSusChem, 2012, 5, 2058-2064.	3.6	180
31	Adsorption and separation of hydrogen isotopes in carbon nanotubes: Multicomponent grand canonical Monte Carlo simulations. Journal of Chemical Physics, 2002, 116, 814-824.	1.2	172
32	Selecting metal organic frameworks as enabling materials in mixed matrix membranes for high efficiency natural gas purification. Energy and Environmental Science, 2010, 3, 343.	15.6	172
33	Monte Carlo Simulation of Single- and Binary-Component Adsorption of CO2, N2, and H2in Zeolite Na-4A. Energy & Fuels, 2003, 17, 977-983.	2.5	165
34	Temperature and Loading-Dependent Diffusion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations. Journal of the American Chemical Society, 2015, 137, 15760-15771.	6.6	164
35	Analysis of Equilibrium-Based TSA Processes for Direct Capture of CO ₂ from Air. Industrial & Engineering Chemistry Research, 2012, 51, 8631-8645.	1.8	163
36	Role of Lewis and BrÃ,nsted Acid Sites in the Dehydration of Glycerol over Niobia. ACS Catalysis, 2014, 4, 3180-3192.	5.5	163

#	Article	lF	CITATIONS
37	Efficient Methods for Screening of Metal Organic Framework Membranes for Gas Separations Using Atomically Detailed Models. Langmuir, 2009, 25, 11786-11795.	1.6	161
38	Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8. Journal of Physical Chemistry C, 2014, 118, 20727-20733.	1.5	145
39	A Comprehensive Set of High-Quality Point Charges for Simulations of Metal–Organic Frameworks. Chemistry of Materials, 2016, 28, 785-793.	3.2	140
40	How Reproducible Are Isotherm Measurements in Metal–Organic Frameworks?. Chemistry of Materials, 2017, 29, 10487-10495.	3.2	136
41	Adsorption and Diffusion of Small Alcohols in Zeolitic Imidazolate Frameworks ZIF-8 and ZIF-90. Journal of Physical Chemistry C, 2013, 117, 3169-3176.	1.5	135
42	Structure and Mobility of Metal Clusters in MOFs: Au, Pd, and AuPd Clusters in MOF-74. Journal of the American Chemical Society, 2012, 134, 12807-12816.	6.6	132
43	CO2 capture via adsorption in amine-functionalized sorbents. Current Opinion in Chemical Engineering, 2016, 12, 82-90.	3.8	132
44	Carbon Dioxide and Methane Transport in DDR Zeolite: Insights from Molecular Simulations into Carbon Dioxide Separations in Small Pore Zeolites. Journal of the American Chemical Society, 2009, 131, 7896-7904.	6.6	130
45	Rational Tuning of Water Vapor and CO ₂ Adsorption in Highly Stable Zr-Based MOFs. Journal of Physical Chemistry C, 2012, 116, 23526-23532.	1.5	129
46	Direct Tests of the Darken Approximation for Molecular Diffusion in Zeolites Using Equilibrium Molecular Dynamics. Journal of Physical Chemistry B, 2001, 105, 3151-3154.	1.2	128
47	Facet-Specific Stability of ZIF-8 in the Presence of Acid Gases Dissolved in Aqueous Solutions. Chemistry of Materials, 2016, 28, 6960-6967.	3.2	127
48	Recent developments in first-principles force fields for molecules in nanoporous materials. Journal of Materials Chemistry A, 2014, 2, 274-291.	5.2	126
49	Prediction of CO ₂ Adsorption Properties in Zeolites Using Force Fields Derived from Periodic Dispersion-Corrected DFT Calculations. Journal of Physical Chemistry C, 2012, 116, 10692-10701.	1.5	123
50	Computational Characterization of Defects in Metal–Organic Frameworks: Spontaneous and Water-Induced Point Defects in ZIF-8. Journal of Physical Chemistry Letters, 2016, 7, 459-464.	2.1	119
51	Interactions of SO ₂ -Containing Acid Gases with ZIF-8: Structural Changes and Mechanistic Investigations. Journal of Physical Chemistry C, 2016, 120, 27221-27229.	1.5	115
52	Structural and Mechanistic Differences in Mixed-Linker Zeolitic Imidazolate Framework Synthesis by Solvent Assisted Linker Exchange and <i>de Novo</i> Routes. Journal of the American Chemical Society, 2017, 139, 5906-5915.	6.6	111
53	Propane dehydrogenation catalyzed by gallosilicate MFI zeolites with perturbed acidity. Journal of Catalysis, 2017, 345, 113-123.	3.1	111
54	Accurate Treatment of Electrostatics during Molecular Adsorption in Nanoporous Crystals without Assigning Point Charges to Framework Atoms. Journal of Physical Chemistry C, 2011, 115, 4824-4836.	1.5	106

#	Article	IF	CITATIONS
55	High-Throughput Screening of Metal–Organic Frameworks for CO ₂ Separation. ACS Combinatorial Science, 2012, 14, 263-267.	3.8	106
56	Thermal, Oxidative and CO ₂ Induced Degradation of Primary Amines Used for CO ₂ Capture: Effect of Alkyl Linker on Stability. Journal of Physical Chemistry C, 2014, 118, 12302-12311.	1.5	103
57	Large-Scale Refinement of Metalâ^'Organic Framework Structures Using Density Functional Theory. Chemistry of Materials, 2017, 29, 2521-2528.	3.2	103
58	Identification of Metal–Organic Framework Materials for Adsorption Separation of Rare Gases: Applicability of Ideal Adsorbed Solution Theory (IAST) and Effects of Inaccessible Framework Regions. Journal of Physical Chemistry C, 2012, 116, 13183-13195.	1.5	102
59	Structures of Glycine, Enantiopure Alanine, and Racemic Alanine Adlayers on Cu(110) and Cu(100) Surfaces. Journal of Physical Chemistry B, 2005, 109, 16764-16773.	1.2	101
60	Molecular Simulations and Theoretical Predictions for Adsorption and Diffusion of CH ₄ /H ₂ and CO ₂ /CH ₄ Mixtures in ZIFs. Journal of Physical Chemistry C, 2011, 115, 12560-12566.	1.5	101
61	Light isotope separation in carbon nanotubes through quantum molecular sieving. Physical Review B, 2001, 63, .	1.1	100
62	Propane Dehydrogenation over Alumina-Supported Iron/Phosphorus Catalysts: Structural Evolution of Iron Species Leading to High Activity and Propylene Selectivity. ACS Catalysis, 2016, 6, 5673-5683.	5.5	96
63	MOF stability and gas adsorption as a function of exposure to water, humid air, SO2, and NO2. Microporous and Mesoporous Materials, 2013, 173, 86-91.	2.2	94
64	Molecular chemisorption on open metal sites in Cu3(benzenetricarboxylate)2: A spatially periodic density functional theory study. Journal of Chemical Physics, 2010, 133, 094509.	1.2	87
65	Acid Gas Stability of Zeolitic Imidazolate Frameworks: Generalized Kinetic and Thermodynamic Characteristics. Chemistry of Materials, 2018, 30, 4089-4101.	3.2	86
66	Ab initiolattice-gas modeling of interstitial hydrogen diffusion in CuPd alloys. Physical Review B, 2005, 71, .	1.1	85
67	Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations: Cu(hfipbb)(H2hfipbb)0.5. Physical Chemistry Chemical Physics, 2009, 11, 11389.	1.3	83
68	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34,	11.1	82
69	Pore size analysis of >250 000 hypothetical zeolites. Physical Chemistry Chemical Physics, 2011, 13, 5053.	1.3	81
70	Comparisons of diffusive and viscous contributions to transport coefficients of light gases in single-walled carbon nanotubes. Molecular Simulation, 2005, 31, 643-649.	0.9	79
71	Developing chiral surfaces for enantioselective chemical processing. AICHE Journal, 2009, 55, 2484-2490.	1.8	79
72	First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites. Physical Chemistry Chemical Physics, 2013, 15, 12882.	1.3	79

#	Article	IF	CITATIONS
73	Synergistic Effects of Water and SO ₂ on Degradation of MIL-125 in the Presence of Acid Gases. Journal of Physical Chemistry C, 2016, 120, 27230-27240.	1.5	79
74	Methods for Computing Accurate Atomic Spin Moments for Collinear and Noncollinear Magnetism in Periodic and Nonperiodic Materials. Journal of Chemical Theory and Computation, 2011, 7, 4146-4164.	2.3	77
75	Hierarchical Ga-MFI Catalysts for Propane Dehydrogenation. Chemistry of Materials, 2017, 29, 7213-7222.	3.2	77
76	Molecular dynamics simulation of framework flexibility effects on noble gas diffusion in HKUST-1 and ZIF-8. Microporous and Mesoporous Materials, 2014, 194, 190-199.	2.2	75
77	Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies. Journal of Physical Chemistry C, 2017, 121, 23471-23479.	1.5	73
78	Monolith-Supported Amine-Functionalized Mg ₂ (dobpdc) Adsorbents for CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 17042-17050.	4.0	71
79	Predictive Assessment of Surface Resistances in Zeolite Membranes Using Atomically Detailed Models. Journal of Physical Chemistry B, 2005, 109, 7237-7244.	1.2	70
80	High- <i>T</i> _c Layered Ferrielectric Crystals by Coherent Spinodal Decomposition. ACS Nano, 2015, 9, 12365-12373.	7.3	67
81	Atomically Detailed Models of the Effect of Thermal Roughening on the Enantiospecificity of Naturally Chiral Platinum Surfaces. Langmuir, 2002, 18, 3737-3748.	1.6	66
82	Surface Interactions of C ₂ and C ₃ Polyols with γ-Al ₂ O ₃ and the Role of Coadsorbed Water. Langmuir, 2013, 29, 581-593.	1.6	66
83	Examining the Accuracy of Ideal Adsorbed Solution Theory without Curve-Fitting Using Transition Matrix Monte Carlo Simulations. Langmuir, 2007, 23, 6431-6437.	1.6	65
84	Benchmarking density functional theory predictions of framework structures and properties in a chemically diverse test set of metal–organic frameworks. Journal of Materials Chemistry A, 2015, 3, 22432-22440.	5.2	64
85	Screening of Copper Open Metal Site MOFs for Olefin/Paraffin Separations Using DFT-Derived Force Fields. Journal of Physical Chemistry C, 2016, 120, 23044-23054.	1.5	61
86	Understanding Structure, Metal Distribution, and Water Adsorption in Mixed-Metal MOF-74. Journal of Physical Chemistry C, 2017, 121, 627-635.	1.5	61
87	Temperature-regulated guest admission and release in microporous materials. Nature Communications, 2017, 8, 15777.	5.8	60
88	Construction of an Anion-Pillared MOF Database and the Screening of MOFs Suitable for Xe/Kr Separation. ACS Applied Materials & Interfaces, 2021, 13, 11039-11049.	4.0	60
89	Density Functional Theory Study of H and CO Adsorption on Alkali-Promoted Mo ₂ C Surfaces. Journal of Physical Chemistry C, 2011, 115, 6870-6876.	1.5	59
90	CO ₂ Dynamics in Pure and Mixed-Metal MOFs with Open Metal Sites. Journal of Physical Chemistry C, 2017, 121, 25778-25787.	1.5	59

#	Article	IF	CITATIONS
91	How Useful Are Common Simulants of Chemical Warfare Agents at Predicting Adsorption Behavior?. Journal of Physical Chemistry C, 2018, 122, 26061-26069.	1.5	58
92	Predicting Single-Component Permeance through Macroscopic Zeolite Membranes from Atomistic Simulations. Industrial & amp; Engineering Chemistry Research, 2000, 39, 3737-3746.	1.8	57
93	Identification of High-CO ₂ -Capacity Cationic Zeolites by Accurate Computational Screening. Chemistry of Materials, 2016, 28, 3887-3896.	3.2	57
94	Prediction of Water Adsorption in Copper-Based Metal–Organic Frameworks Using Force Fields Derived from Dispersion-Corrected DFT Calculations. Journal of Physical Chemistry C, 2013, 117, 7519-7525.	1.5	56
95	Insights into the Stability of Zeolitic Imidazolate Frameworks in Humid Acidic Environments from First-Principles Calculations. Journal of Physical Chemistry C, 2018, 122, 4339-4348.	1.5	55
96	Efficient and Accurate Methods for Characterizing Effects of Framework Flexibility on Molecular Diffusion in Zeolites: CH ₄ Diffusion in Eight Member Ring Zeolites. Journal of Physical Chemistry C, 2013, 117, 13462-13473.	1.5	54
97	AZn2(BH4)5(A = Li, Na) and NaZn(BH4)3: Structural Studies. Journal of Physical Chemistry C, 2010, 114, 19127-19133.	1.5	53
98	Liquid-Phase Multicomponent Adsorption and Separation of Xylene Mixtures by Flexible MIL-53 Adsorbents. Journal of Physical Chemistry C, 2018, 122, 386-397.	1.5	52
99	Using first-principles calculations to accelerate materials discovery for hydrogen purification membranes by modeling amorphous metals. Energy and Environmental Science, 2008, 1, 175.	15.6	51
100	Thin Hydrogen-Selective SAPO-34 Zeolite Membranes for Enhanced Conversion and Selectivity in Propane Dehydrogenation Membrane Reactors. Chemistry of Materials, 2016, 28, 4397-4402.	3.2	51
101	How Well Do Approximate Models of Adsorption-Based CO ₂ Capture Processes Predict Results of Detailed Process Models?. Industrial & Engineering Chemistry Research, 2020, 59, 7097-7108.	1.8	51
102	Enantiospecific adsorption of chiral hydrocarbons on naturally chiral Pt and Cu surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 1700-1704.	0.9	50
103	Efficiently Exploring Adsorption Space to Identify Privileged Adsorbents for Chemical Separations of a Diverse Set of Molecules. ChemSusChem, 2018, 11, 1567-1575.	3.6	50
104	Effects of Intrinsic Flexibility on Adsorption Properties of Metal–Organic Frameworks at Dilute and Nondilute Loadings. ACS Applied Materials & Interfaces, 2019, 11, 31060-31068.	4.0	50
105	Effect of Surface Structure of TiO ₂ Nanoparticles on CO ₂ Adsorption and SO ₂ Resistance. ACS Sustainable Chemistry and Engineering, 2017, 5, 9295-9306.	3.2	49
106	Control of Metal–Organic Framework Crystal Topology by Ligand Functionalization: Functionalized HKUST-1 Derivatives. Crystal Growth and Design, 2014, 14, 6122-6128.	1.4	48
107	Propane Dehydrogenation over In ₂ O ₃ –Ga ₂ O ₃ –Al ₂ O ₃ Mixed Oxides. ChemCatChem, 2016, 8, 214-221.	1.8	48
108	A Collection of More than 900 Gas Mixture Adsorption Experiments in Porous Materials from Literature Meta-Analysis. Industrial & Engineering Chemistry Research, 2021, 60, 639-651.	1.8	48

#	Article	IF	CITATIONS
109	Transition State Theory Methods To Measure Diffusion in Flexible Nanoporous Materials: Application to a Porous Organic Cage Crystal. Journal of Physical Chemistry C, 2016, 120, 1110-1120.	1.5	47
110	Moving Beyond Adsorption Capacity in Design of Adsorbents for CO ₂ Capture from Ultradilute Feeds: Kinetics of CO ₂ Adsorption in Materials with Stepped Isotherms. Industrial & Engineering Chemistry Research, 2019, 58, 366-377.	1.8	47
111	Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning. Science Advances, 2021, 7, .	4.7	47
112	Influences of concerted cluster diffusion on single-file diffusion of CF4 in AlPO4-5 and Xe in AlPO4-31. Journal of Chemical Physics, 2000, 112, 817-824.	1.2	46
113	The Physico-chemical Properties of Cinchona Alkaloids Responsible for their Unique Performance in Chiral Catalysis. Topics in Catalysis, 2008, 48, 120-127.	1.3	46
114	Importance of Kinetics in Surface Alloying: A Comparison of the Diffusion Pathways of Pd and Ag Atoms on Cu(111). Journal of Physical Chemistry C, 2009, 113, 12863-12869.	1.5	46
115	Flexibility of Ordered Surface Hydroxyls Influences the Adsorption of Molecules in Single-Walled Aluminosilicate Nanotubes. Journal of Physical Chemistry Letters, 2010, 1, 1235-1240.	2.1	46
116	Computational Identification and Experimental Evaluation of Metal–Organic Frameworks for Xylene Enrichment. Journal of Physical Chemistry C, 2016, 120, 12075-12082.	1.5	46
117	Structure Elucidation of Mixed-Linker Zeolitic Imidazolate Frameworks by Solid-State 1H CRAMPS NMR Spectroscopy and Computational Modeling. Journal of the American Chemical Society, 2016, 138, 7325-7336.	6.6	45
118	Thermal Fluctuations in the Structure of Naturally Chiral Pt surfaces. Topics in Catalysis, 2002, 18, 193-200.	1.3	44
119	First-principles studies of chiral step reconstructions of Cu(100) by adsorbed glycine and alanine. Journal of Chemical Physics, 2006, 124, 074703.	1.2	44
120	Establishing upper bounds on CO ₂ swing capacity in sub-ambient pressure swing adsorption via molecular simulation of metal–organic frameworks. Journal of Materials Chemistry A, 2017, 5, 12258-12265.	5.2	44
121	Formation Mechanisms and Defect Engineering of Imine-Based Porous Organic Cages. Chemistry of Materials, 2018, 30, 262-272.	3.2	44
122	Tuning the Structures of Metal–Organic Frameworks <i>via</i> a Mixed-Linker Strategy for Ethylene/Ethane Kinetic Separation. Chemistry of Materials, 2020, 32, 3715-3722.	3.2	44
123	Butanol Separation from Humid CO ₂ -Containing Multicomponent Vapor Mixtures by Zeolitic Imidazolate Frameworks. ACS Sustainable Chemistry and Engineering, 2017, 5, 9467-9476.	3.2	41
124	Tuning the Wettability of Metal–Organic Frameworks via Defect Engineering for Efficient Oil/Water Separation. ACS Applied Materials & Interfaces, 2020, 12, 34413-34422.	4.0	41
125	A porous maze. Nature Chemistry, 2011, 3, 429-430.	6.6	39
126	Computational Prediction of Metal Organic Frameworks Suitable for Molecular Infiltration as a Route to Development of Conductive Materials. Journal of Physical Chemistry Letters, 2015, 6, 1586-1591.	2.1	39

#	Article	IF	CITATIONS
127	Assessing the Impact of Point Defects on Molecular Diffusion in ZIF-8 Using Molecular Simulations. Journal of Physical Chemistry Letters, 2018, 9, 4037-4044.	2.1	39
128	Efficient Simulation of Binary Adsorption Isotherms Using Transition Matrix Monte Carlo. Langmuir, 2006, 22, 709-716.	1.6	38
129	Effect of Framework Flexibility on C ₈ Aromatic Adsorption at High Loadings in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2016, 120, 370-376.	1.5	38
130	Does repeat synthesis in materials chemistry obey a power law?. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 877-882.	3.3	38
131	Interpretable Machine Learning-Based Predictions of Methane Uptake Isotherms in Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 3543-3552.	3.2	38
132	Antiphase domain boundaries at the Fe <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub></mml:math> O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow< td=""><td>1.1</td><td>37</td></mml:mrow<></mml:msub></mml:math 	1.1	37
133	/> <mml:mn>4</mml:mn> (001) surface. Physical Review B, 2012, 85, . DFT-Derived Force Fields for Modeling Hydrocarbon Adsorption in MIL-47(V). Langmuir, 2015, 31, 8453-8468.	1.6	37
134	Using first-principles calculations to predict surface resistances to H2 transport through metal alloy membranes. Journal of Membrane Science, 2007, 303, 162-172.	4.1	36
135	Osmotic ensemble methods for predicting adsorption-induced structural transitions in nanoporous materials using molecular simulations. Journal of Chemical Physics, 2011, 134, 184103.	1.2	36
136	Competitive Binding of Ethylene, Water, and Carbon Monoxide in Metal–Organic Framework Materials with Open Cu Sites. Journal of Physical Chemistry C, 2018, 122, 8960-8966.	1.5	35
137	Stability of Zeolitic Imidazolate Frameworks in NO ₂ . Journal of Physical Chemistry C, 2019, 123, 2336-2346.	1.5	35
138	Brownian dynamics simulation of the motion of a rigid sphere in a viscous fluid very near a wall. Journal of Chemical Physics, 2000, 113, 9268-9278.	1.2	34
139	Tuning Binding Tendencies of Small Molecules in Metal–Organic Frameworks with Open Metal Sites by Metal Substitution and Linker Functionalization. Journal of Physical Chemistry C, 2018, 122, 27486-27494.	1.5	34
140	DFT-based force field development for noble gas adsorption in metal organic frameworks. Journal of Materials Chemistry A, 2015, 3, 23539-23548.	5.2	33
141	The Effect of Aluminum Short-Range Ordering on Carbon Dioxide Adsorption in Zeolites. Journal of Physical Chemistry C, 2018, 122, 12332-12340.	1.5	33
142	Research Challenges in Avoiding "Showstoppers―in Developing Materials for Large-Scale Energy Applications. Joule, 2017, 1, 208-211.	11.7	32
143	Determining Diffusion Coefficients of Chemical Warfare Agents in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2019, 10, 7823-7830.	2.1	32
144	A Database of Porous Rigid Amorphous Materials. Chemistry of Materials, 2020, 32, 8020-8033.	3.2	32

#	Article	IF	CITATIONS
145	Exemplar Mixtures for Studying Complex Mixture Effects in Practical Chemical Separations. Jacs Au, 2022, 2, 322-327.	3.6	32
146	Effect of correlated flights on particle mobilities during single-file diffusion. Physical Review E, 1997, 55, 7753-7756.	0.8	31
147	Quantitative assessment of hydrogen diffusion by activated hopping and quantum tunneling in ordered intermetallics. Physical Review B, 2005, 72, .	1.1	31
148	Engineering Porous Organic Cage Crystals with Increased Acid Gas Resistance. Chemistry - A European Journal, 2016, 22, 10743-10747.	1.7	31
149	Molecular Simulation of Capture of Sulfur-Containing Gases by Porous Aromatic Frameworks. Journal of Physical Chemistry C, 2018, 122, 18456-18467.	1.5	31
150	Self-diffusion and macroscopic diffusion of hydrogen in amorphous metals from first-principles calculations. Journal of Chemical Physics, 2009, 130, 244705.	1.2	30
151	Screening Diffusion of Small Molecules in Flexible Zeolitic Imidazolate Frameworks Using a DFT-Parameterized Force Field. Journal of Physical Chemistry C, 2019, 123, 9153-9167.	1.5	30
152	Computational Screening of MOFs and Zeolites for Direct Air Capture of Carbon Dioxide under Humid Conditions. Journal of Physical Chemistry C, 2021, 125, 24630-24639.	1.5	30
153	Characterization of the Thermodynamic Stability of Solvated Metal–Organic Framework Polymorphs Using Molecular Simulations. Journal of Physical Chemistry C, 2013, 117, 20636-20642.	1.5	29
154	One-Step Synthesis of Zeolite Membranes Containing Catalytic Metal Nanoclusters. ACS Applied Materials & Interfaces, 2016, 8, 24671-24681.	4.0	29
155	Significant Temperature Dependence of the Isosteric Heats of Adsorption of Gases in Zeolites Demonstrated by Experiments and Molecular Simulations. Journal of Physical Chemistry C, 2019, 123, 20405-20412.	1.5	29
156	Selecting Adsorbents to Separate Diverse Near-Azeotropic Chemicals. Journal of Physical Chemistry C, 2020, 124, 3664-3670.	1.5	29
157	First principles assessment of perovskite dopants for proton conductors with chemical stability and high conductivity. RSC Advances, 2013, 3, 3333.	1.7	28
158	Adsorption and Diffusion of 4d and 5d Transition Metal Adatoms on Graphene/Ru(0001) and the Implications for Cluster Nucleation. Topics in Catalysis, 2014, 57, 69-79.	1.3	28
159	Effects of Open Metal Site Availability on Adsorption Capacity and Olefin/Paraffin Selectivity in the Metal–Organic Framework Cu ₃ (BTC) ₂ . Industrial & Engineering Chemistry Research, 2016, 55, 5043-5053.	1.8	28
160	Computational Screening of Functionalized UiO-66 Materials for Selective Contaminant Removal from Air. Journal of Physical Chemistry C, 2017, 121, 20396-20406.	1.5	28
161	Opening the Toolbox: 18 Experimental Techniques for Measurement of Mixed Gas Adsorption. Industrial & Engineering Chemistry Research, 2022, 61, 2367-2391.	1.8	28
162	Multiscale models of sweep gas and porous support effects on zeolite membranes. AICHE Journal, 2005, 51, 867-877.	1.8	27

#	Article	IF	CITATIONS
163	Stability analysis of doped materials for reversible hydrogen storage in destabilized metal hydrides. Physical Review B, 2007, 76, .	1.1	26
164	Thermodynamics of Pore Filling Metal Clusters in Metal Organic Frameworks: Pd in UiO-66. Journal of Physical Chemistry Letters, 2012, 3, 3702-3706.	2.1	26
165	Does Chemical Engineering Research Have a Reproducibility Problem?. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 43-57.	3.3	26
166	Diffusion of xenon on a platinum surface: the influence of correlated flights. Physica D: Nonlinear Phenomena, 1994, 71, 168-184.	1.3	25
167	First-Principles-Derived Force Fields for CH ₄ Adsorption and Diffusion in Siliceous Zeolites. Journal of Physical Chemistry C, 2018, 122, 12880-12891.	1.5	25
168	Efficient Models for Predicting Temperature-Dependent Henry's Constants and Adsorption Selectivities for Diverse Collections of Molecules in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2021, 125, 18046-18057.	1.5	25
169	A systematic examination of the impacts of MOF flexibility on intracrystalline molecular diffusivities. Journal of Materials Chemistry A, 2022, 10, 4242-4253.	5.2	25
170	Single-walled zeolitic nanotubes. Science, 2022, 375, 62-66.	6.0	25
171	Improved Hill–Sauer Force Field for Accurate Description of Pores in 8-Ring Zeolites. Journal of Physical Chemistry C, 2016, 120, 14140-14148.	1.5	24
172	Recovery of Acid-Gas-Degraded Zeolitic Imidazolate Frameworks by Solvent-Assisted Crystal Redemption (SACRed). ACS Applied Materials & Interfaces, 2017, 9, 34597-34602.	4.0	24
173	Impacts of Gas Impurities from Pipeline Natural Gas on Methane Storage in Metal–Organic Frameworks during Long-Term Cycling. Journal of Physical Chemistry C, 2017, 121, 15735-15745.	1.5	24
174	A Strong Test of Atomically Detailed Models of Molecular Adsorption in Zeolites Using Multilaboratory Experimental Data for CO2 Adsorption in Ammonium ZSM-5. Journal of Physical Chemistry Letters, 2020, 11, 471-477.	2.1	24
175	Analysis of Binary Transport Diffusivities and Self-Diffusivities in a Lattice Model for Silicalite. Langmuir, 2002, 18, 7393-7400.	1.6	23
176	Acid Gas Adsorption on Metal–Organic Framework Nanosheets as a Model of an "All-Surface― Material. Journal of Chemical Theory and Computation, 2017, 13, 1341-1350.	2.3	23
177	Effects of Surface Relaxation on Enantiospecific Adsorption on Naturally Chiral Pt Surfaces. Topics in Catalysis, 2002, 18, 201-208.	1.3	22
178	Pt thin films on the polarLaAlO3(100)surface: A first-principles study. Physical Review B, 2006, 73, .	1.1	22
179	Rapid prediction of hydrogen permeation through amorphous metal membranes: an efficient computational screening approach. Energy and Environmental Science, 2013, 6, 232-240.	15.6	22
180	Modeling Diffusion of Linear Hydrocarbons in Silica Zeolite LTA Using Transition Path Sampling. Journal of Physical Chemistry C, 2015, 119, 15643-15653.	1.5	22

#	Article	IF	CITATIONS
181	Understanding Dealumination Mechanisms in Protonic and Cationic Zeolites. Journal of Physical Chemistry C, 2020, 124, 668-676.	1.5	22
182	Effect of Humidity on the Sorption of H ₂ S from Multicomponent Acid Gas Streams on Silica-Supported Sterically Hindered and Unhindered Amines. ACS Sustainable Chemistry and Engineering, 2020, 8, 10102-10114.	3.2	22
183	Impact of intrinsic framework flexibility for selective adsorption of sarin in non-aqueous solvents using metal–organic frameworks. Physical Chemistry Chemical Physics, 2020, 22, 6441-6448.	1.3	22
184	Atomically detailed simulations of surface resistances to transport of CH4, CF4, and C2H6 through silicalite membranes. Microporous and Mesoporous Materials, 2008, 107, 286-295.	2.2	20
185	Material properties and operating configurations of membrane reactors for propane dehydrogenation. AICHE Journal, 2015, 61, 922-935.	1.8	20
186	Computational Model and Characterization of Stacking Faults in ZIF-8 Polymorphs. Journal of Physical Chemistry C, 2016, 120, 27380-27388.	1.5	20
187	Hierarchical Bayesian estimation for adsorption isotherm parameter determination. Chemical Engineering Science, 2020, 214, 115435.	1.9	20
188	Experimentally Verified Alcohol Adsorption Isotherms in Nanoporous Materials from Literature Meta-Analysis. Journal of Chemical & Engineering Data, 2020, 65, 4970-4979.	1.0	20
189	Comprehensive Assessment of the Accuracy of the Ideal Adsorbed Solution Theory for Predicting Binary Adsorption of Gas Mixtures in Porous Materials. Industrial & Engineering Chemistry Research, 2022, 61, 727-739.	1.8	20
190	Firstâ€principles investigation of chemical stability and proton conductivity of Mâ€doped BaZrO ₃ (M=K, Rb, and Cs). Journal of the American Ceramic Society, 2017, 100, 2997-3003.	1.9	19
191	Prediction of Adsorption Properties of Cyclic Hydrocarbons in MOFs Using DFT-Derived Force Fields. Journal of Physical Chemistry C, 2015, 119, 16920-16926.	1.5	18
192	Fluorinated Carbide-Derived Carbon: More Hydrophilic, Yet Apparently More Hydrophobic. Journal of the American Chemical Society, 2015, 137, 5969-5979.	6.6	18
193	Predictions of Hg ⁰ and HgCl ₂ Adsorption Properties in UiO-66 from Flue Gas Using Molecular Simulations. Journal of Physical Chemistry C, 2019, 123, 5972-5979.	1.5	18
194	Propagation of Degradation-Induced Defects in Zeolitic Imidazolate Frameworks. Journal of Physical Chemistry C, 2019, 123, 6655-6666.	1.5	18
195	Database of Computation-Ready 2D Zeolitic Slabs. Chemistry of Materials, 2019, 31, 353-364.	3.2	18
196	Characterization of Bulk Structure in Zinc Orthotitanate: A Density Functional Theory and EXAFS Investigation. Journal of the American Ceramic Society, 2008, 91, 584-590.	1.9	17
197	Molecular simulations of hydrogen and methane permeation through pore mouth modified zeolite membranes. Molecular Simulation, 2009, 35, 70-78.	0.9	17
198	Modeling and process simulation of hollow fiber membrane reactor systems for propane dehydrogenation. AICHE Journal, 2017, 63, 4519-4531.	1.8	17

#	Article	IF	CITATIONS
199	Rapid Prediction of Adsorption Isotherms of a Diverse Range of Molecules in Hyper-Cross-Linked Polymers. Journal of Physical Chemistry C, 2019, 123, 17884-17893.	1.5	17
200	Molecular Dynamics Investigation of Surface Resistances in Zeolite Nanosheets. Journal of Physical Chemistry C, 2020, 124, 15241-15252.	1.5	17
201	High-Throughput Screening of Anion-Pillared Metal–Organic Frameworks for the Separation of Light Hydrocarbons. Journal of Physical Chemistry C, 2021, 125, 20076-20086.	1.5	17
202	Incorporating Flexibility Effects into Metal–Organic Framework Adsorption Simulations Using Different Models. ACS Applied Materials & Interfaces, 2021, 13, 61305-61315.	4.0	17
203	Kinetics of hard sphere and chain adsorption into circular and elliptical pores. Journal of Chemical Physics, 2000, 113, 4379-4387.	1.2	16
204	Density Functional Theory Studies of Chemisorption and Diffusion Properties of Ni and Niâ^'Thiophene Complexes on the MoS2 Basal Plane. Journal of Physical Chemistry B, 2003, 107, 1988-2000.	1.2	16
205	Preparation and Gas Adsorption Characteristics of Zeolite MFI Crystals with Organic-Functionalized Interiors. Journal of Physical Chemistry C, 2011, 115, 19640-19646.	1.5	16
206	Identifying Metal Alloys with High Hydrogen Permeability Using High Throughput Theory and Experimental Testing. Journal of Physical Chemistry Letters, 2011, 2, 3040-3044.	2.1	16
207	Sorption and Transport of Vapors in ZIF-11: Adsorption, Diffusion, and Linker Flexibility. Journal of Physical Chemistry C, 2019, , .	1.5	16
208	Adsorption space for microporous polymers with diverse adsorbate species. Npj Computational Materials, 2021, 7, .	3.5	16
209	First-Principles Models of Facilitating H ₂ Transport through Metal Films Using Spillover. Journal of Physical Chemistry C, 2013, 117, 1217-1223.	1.5	15
210	Quantitative Predictions of Molecular Diffusion in Binary Mixed-Linker Zeolitic Imidazolate Frameworks Using Molecular Simulations. Journal of Physical Chemistry C, 2018, 122, 5627-5638.	1.5	15
211	Quantitative Correlations for the Durability of Zeolitic Imidazolate Frameworks in Humid SO2. Industrial & Engineering Chemistry Research, 2020, 59, 245-252.	1.8	15
212	Powered by DFT: Screening Methods That Accelerate Materials Development for Hydrogen in Metals Applications. Accounts of Chemical Research, 2014, 47, 3275-3283.	7.6	14
213	Computational investigation on CO2 adsorption in titanium carbide-derived carbons with residual titanium. Carbon, 2017, 111, 741-751.	5.4	14
214	Investigation of the adsorption of amino acids on Pd(111): A density functional theory study. Applied Surface Science, 2014, 301, 199-207.	3.1	13
215	Efficient Calculation of Gas Diffusivity in Single-Component and Binary Mixtures of Spherical Adsorbates in Flexible 8MR Zeolites. Journal of Physical Chemistry C, 2015, 119, 16596-16605.	1.5	13
216	Quantitatively Predicting Impact of Structural Flexibility on Molecular Diffusion in Small Pore Metal–Organic Frameworks—A Molecular Dynamics Study of Hypothetical ZIF-8 Polymorphs. Journal of Physical Chemistry C, 2020, 124, 20203-20212.	1.5	13

#	Article	IF	CITATIONS
217	Testing Predictions of Macroscopic Binary Diffusion Coefficients Using Lattice Models with Site Heterogeneity. Langmuir, 2006, 22, 3707-3714.	1.6	12
218	Kinetics ofH2desorption from crystallineC60. Physical Review B, 2005, 71, .	1.1	11
219	Five Easy Ways To Make Your Research More Reproducible. Langmuir, 2019, 35, 13257-13258.	1.6	11
220	A Transferable Force Field for Predicting Adsorption and Diffusion of Hydrocarbons and Small Molecules in Silica Zeolites with Coupled-Cluster Accuracy. Journal of Physical Chemistry C, 2021, 125, 8418-8429.	1.5	11
221	Accelerating Solvent Selection for Type II Porous Liquids. Journal of the American Chemical Society, 2022, 144, 4071-4079.	6.6	11
222	Impact of branching on the supramolecular assembly of thioethers on Au(111). Journal of Chemical Physics, 2015, 142, 101915.	1.2	10
223	Lattice-Gas Modeling of Adsorbate Diffusion in Mixed-Linker Zeolitic Imidazolate Frameworks: Effect of Local Imidazolate Ordering. Langmuir, 2017, 33, 6481-6491.	1.6	10
224	Using Site Heterogeneity in Metal–Organic Frameworks with Bimetallic Open Metal Sites for Olefin/Paraffin Separations. ACS Applied Nano Materials, 2020, 3, 5291-5300.	2.4	10
225	First principles studies of proton conduction in KTaO3. Journal of Chemical Physics, 2014, 141, 024707.	1.2	9
226	Large-Scale Computational Screening of Binary Intermetallics for Membrane-Based Hydrogen Separation. Journal of Physical Chemistry C, 2015, 119, 26319-26326.	1.5	9
227	Adsorption-Based Separation of Near-Azeotropic Mixtures—A Challenging Example for High-Throughput Development of Adsorbents. Journal of Physical Chemistry B, 2021, 125, 926-936.	1.2	9
228	Quantifying Impact of Intrinsic Flexibility on Molecular Adsorption in Zeolites. Journal of Physical Chemistry C, 2021, 125, 5296-5305.	1.5	9
229	Effect of Loading on the Water Stability of the Metal–Organic Framework DMOF-1 [Zn(bdc)(dabco) _{0.5}]. Journal of Physical Chemistry Letters, 2022, 13, 4891-4896.	2.1	9
230	Near Surface Phase Transition of Solute Derived Pt Monolayers. Topics in Catalysis, 2013, 56, 1065-1073.	1.3	8
231	Kinetic Model of Acid Gas Induced Defect Propagation in Zeolitic Imidazolate Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 6541-6548.	2.1	8
232	Enantiospecific Properties of Chiral Single-Crystal Surfaces. ACS Symposium Series, 2002, , 269-282.	0.5	7
233	Synthesizing New Hybrid Zeolitic Imidazolate Frameworks by Controlled Demolition and Reconstruction. , 2019, 1, 447-451.		7
234	Analysis of energetics and economics of subâ€ambient hybrid <scp>postâ€combustion carbon dioxide</scp> capture. AICHE Journal, 2021, 67, e17403.	1.8	7

#	Article	IF	CITATIONS
235	Molecular Simulations of CH ₄ and CO ₂ Diffusion in Rigid Nanoporous Amorphous Materials. Journal of Physical Chemistry C, 2022, 126, 8530-8538.	1.5	7
236	Predictions of Sulfur Resistance in Metal Membranes for H2 Purification Using First-Principles Calculations. Industrial & Engineering Chemistry Research, 2012, 51, 301-309.	1.8	6
237	In Silico Prediction of Structural Properties of a Racemic Porous Organic Cage Crystal. Journal of Physical Chemistry C, 2019, 123, 1720-1729.	1.5	6
238	Spin-Crossover Effects in Reversible O2 Binding on a Dinuclear Cobalt(II) Complex. Journal of Physical Chemistry C, 2020, 124, 26843-26850.	1.5	6
239	Inâ€situ IR Spectroscopy Study of Reactions of C3 Oxygenates on Heteroatom (Sn, Mo, and W) doped BEA Zeolites and the Effect of Coâ€adsorbed Water. ChemCatChem, 2021, 13, 445-458.	1.8	6
240	In silico design of microporous polymers for chemical separations and storage. Current Opinion in Chemical Engineering, 2022, 36, 100795.	3.8	6
241	Discrepancy quantification between experimental and simulated data of CO2 adsorption isotherm using hierarchical Bayesian estimation. Separation and Purification Technology, 2022, 296, 121371.	3.9	6
242	A Transferable Force Field for Predicting Adsorption and Diffusion of Small Molecules in Alkali Metal Exchanged Zeolites with Coupled Cluster Accuracy. Journal of Physical Chemistry C, 2021, 125, 26832-26846.	1.5	5
243	Experimentally Verified Alkane Adsorption Isotherms in Nanoporous Materials from Literature Meta-Analysis. Journal of Chemical & Engineering Data, 0, , .	1.0	5
244	Controlled Demolition and Reconstruction of Imidazolate and Carboxylate Metal–Organic Frameworks by Acid Gas Exposure and Linker Treatment. Industrial & Engineering Chemistry Research, 2021, 60, 15582-15592.	1.8	4
245	Gaussian approximation of dispersion potentials for efficient featurization and machine-learning predictions of metal–organic frameworks. Journal of Chemical Physics, 2022, 156, .	1.2	4
246	Writing Theory and Modeling Papers for Langmuir: The Good, the Bad, and the Ugly. Langmuir, 2018, 34, 1817-1818.	1.6	3