MarÃ-a Eugenia FarÃ-as

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3722778/publications.pdf Version: 2024-02-01

4

#	Article	IF	CITATIONS
1	Extremophiles as Plant Probiotics to Promote Germination and Alleviate Salt Stress in Soybean. Journal of Plant Growth Regulation, 2023, 42, 946-959.	5.1	4
2	Lithifying and Non-Lithifying Microbial Ecosystems in the Wetlands and Salt Flats of the Central Andes. Microbial Ecology, 2022, 83, 1-17.	2.8	16
3	Diatom and Invertebrate Assemblages in High Altitude Saline Wetlands of the Argentinian Puna and their Relation to Environmental Factors. Anais Da Academia Brasileira De Ciencias, 2022, 94, .	0.8	0
4	Proteomic Signatures of Microbial Adaptation to the Highest Ultraviolet-Irradiation on Earth: Lessons From a Soil Actinobacterium. Frontiers in Microbiology, 2022, 13, 791714.	3.5	1
5	Ecological variability based on lipid biomarkers in astrobiologically interesting wetlands from the Argentinian central Andes. FEMS Microbiology Ecology, 2022, 98, .	2.7	4
6	Community Vertical Composition of the Laguna Negra Hypersaline Microbial Mat, Puna Region (Argentinean Andes). Biology, 2022, 11, 831.	2.8	6
7	Increasing knowledge of the denizens of saline environments through integrative taxonomy: new Argentinian endemic taxa of <i>Liolaemus</i> (Iguania: Liolaemidae) and their evolutionary relationships. Systematics and Biodiversity, 2021, 19, 135-167.	1.2	5
8	Carbon fixation and rhodopsin systems in microbial mats from hypersaline lakes Brava and Tebenquiche, Salar de Atacama, Chile. PLoS ONE, 2021, 16, e0246656.	2.5	12
9	Shortâ€ŧerm microbialite resurgence as indicator of ecological resilience against crises (Catamarca,) Tj ETQq1 1	0.784314 2.4	rg&T /Overlo
10	Genomic insights into an andean multiresistant soil actinobacterium of biotechnological interest. World Journal of Microbiology and Biotechnology, 2021, 37, 166.	3.6	4
11	Geobiology of Andean Microbial Ecosystems Discovered in Salar de Atacama, Chile. Frontiers in Microbiology, 2021, 12, 762076.	3.5	6
12	Assessment of the plasmidome of an extremophilic microbial community from the Diamante Lake, Argentina. Scientific Reports, 2021, 11, 21459.	3.3	2
13	Andean Microbial Ecosystems: Traces in Hypersaline Lakes About Life Origin. Cuatro Cielnegas Basin: an Endangered Hyperdiverse Oasis, 2020, , 167-181.	0.4	5
14	Modern arsenotrophic microbial mats provide an analogue for life in the anoxic Archean. Communications Earth & Environment, 2020, 1, .	6.8	24
15	Geochemical evidence for arsenic cycling in living microbialites of a High Altitude Andean Lake (Laguna Diamante, Argentina). Chemical Geology, 2020, 549, 119681.	3.3	11
16	First Report on the Plasmidome From a High-Altitude Lake of the Andean Puna. Frontiers in Microbiology, 2020, 11, 1343.	3.5	17
17	Novel Genes Involved in Resistance to Both Ultraviolet Radiation and Perchlorate From the Metagenomes of Hypersaline Environments. Frontiers in Microbiology, 2020, 11, 453.	3.5	10

18 Complete Characterization of Stratified Ecosystems of the Salar de Llamara (Atacama Desert). , 2020, , 153-164.

#	Article	IF	CITATIONS
19	Extreme Microbiology at Laguna Socompa: A High-Altitude Andean Lake (3570ÂmÂa.s.l.) in Salta, Argentina. , 2020, , 205-220.		4
20	Mats and Microbialites from Laguna La Brava. , 2020, , 221-230.		4
21	Integral Prospection of Andean Microbial Ecosystem Project. , 2020, , 245-260.		7
22	Arsenic and Its Biological Role: From Early Earth to Current Andean Microbial Ecosystems. , 2020, , 275-284.		5
23	Modern Microbial Mats and Endoevaporite Systems in Andean Lakes: A General Approach. , 2020, , 21-33.		8
24	A Unique Natural Laboratory to Study Polyextremophile Microorganisms: Diamante Lake as a Window to the Origin of Life. , 2020, , 113-120.		2
25	Prokaryotic Diversity at the Hypersaline Laguna Tebenquiche in the Salar de Atacama, Chile. , 2020, , 141-152.		2
26	Microbial Characterization of Andean Peatland's Soil. , 2020, , 87-93.		1
27	Characterization of Salinivibrio socompensis sp. nov., A New Halophilic Bacterium Isolated from the High-Altitude Hypersaline Lake Socompa, Argentina. Microorganisms, 2019, 7, 241.	3.6	20
28	Polyextremophilic Bacteria from High Altitude Andean Lakes: Arsenic Resistance Profiles and Biofilm Production. BioMed Research International, 2019, 2019, 1-11.	1.9	15
29	Photolyases and Cryptochromes in <scp>UV</scp> â€resistant Bacteria from Highâ€altitude Andean Lakes. Photochemistry and Photobiology, 2019, 95, 315-330.	2.5	24
30	Genomic comparison between members of the Salinibacteraceae family, and description of a new species of Salinibacter (Salinibacter altiplanensis sp. nov.) isolated from high altitude hypersaline environments of the Argentinian Altiplano. Systematic and Applied Microbiology, 2018, 41, 198-212.	2.8	29
31	Biogeographical patterns of bacterial and archaeal communities from distant hypersaline environments. Systematic and Applied Microbiology, 2018, 41, 139-150.	2.8	39
32	Haloarchaea from the Andean Puna: Biological Role in the Energy Metabolism of Arsenic. Microbial Ecology, 2018, 76, 695-705.	2.8	35
33	Characterization of Rhodococcus sp. A5wh isolated from a high altitude Andean lake to unravel the survival strategy under lithium stress. Revista Argentina De Microbiologia, 2018, 50, 311-322.	0.7	11
34	Calcium Carbonate Precipitation in Diatom-rich Microbial Mats: The Laguna Negra Hypersaline Lake, Catamarca, Argentina. Journal of Sedimentary Research, 2018, 88, 727-742.	1.6	44
35	Distribution, redox state and (bio)geochemical implications of arsenic in present day microbialites of Laguna Brava, Salar de Atacama. Chemical Geology, 2018, 490, 13-21.	3.3	41
36	Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis. Scientific Reports, 2017, 7, 1024.	3.3	75

MarÃa Eugenia FarÃas

#	Article	IF	CITATIONS
37	UVâ€Resistant Actinobacteria from Highâ€Altitude Andean Lakes: Isolation, Characterization and Antagonistic Activities. Photochemistry and Photobiology, 2017, 93, 865-880.	2.5	36
38	Transition boundaries for protistan species turnover in hypersaline waters of different biogeographic regions. Environmental Microbiology, 2017, 19, 3186-3200.	3.8	27
39	Stratified Bacterial Diversity along Physico-chemical Gradients in High-Altitude Modern Stromatolites. Frontiers in Microbiology, 2017, 8, 646.	3.5	24
40	The genomic sequence of <i>Exiguobacterium chiriqhucha</i> str. N139 reveals a species that thrives in cold waters and extreme environmental conditions. PeerJ, 2017, 5, e3162.	2.0	27
41	Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile. PLoS ONE, 2017, 12, e0186867.	2.5	45
42	Microbial Diversity in Sediment Ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Frontiers in Microbiology, 2016, 7, 1284.	3.5	79
43	Native Killer Yeasts as Biocontrol Agents of Postharvest Fungal Diseases in Lemons. PLoS ONE, 2016, 11, e0165590.	2.5	68
44	Forged Under the Sun: Life and Art of Extremophiles from Andean Lakes. Photochemistry and Photobiology, 2016, 92, 14-28.	2.5	58
45	Halopeptonella vilamensis gen. nov, sp. nov., a halophilic strictly aerobic bacterium of the family Ectothiorhodospiraceae. Extremophiles, 2016, 20, 19-25.	2.3	18
46	Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea. ISME Journal, 2016, 10, 299-309.	9.8	90
47	Bacterial Diversity in Microbial Mats and Sediments from the Atacama Desert. Microbial Ecology, 2016, 71, 44-56.	2.8	68
48	KatG, the Bifunctional Catalase of Xanthomonas citri subsp. citri, Responds to Hydrogen Peroxide and Contributes to Epiphytic Survival on Citrus Leaves. PLoS ONE, 2016, 11, e0151657.	2.5	22
49	Functional Green-Tuned Proteorhodopsin from Modern Stromatolites. PLoS ONE, 2016, 11, e0154962.	2.5	19
50	Genome comparison of two Exiguobacterium strains from high altitude andean lakes with different arsenic resistance: identification and 3D modeling of the Acr3 efflux pump. Frontiers in Environmental Science, 2015, 3, .	3.3	54
51	Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3. Frontiers in Microbiology, 2015, 06, 328.	3.5	53
52	High-Up: A Remote Reservoir of Microbial Extremophiles in Central Andean Wetlands. Frontiers in Microbiology, 2015, 6, 1404.	3.5	80
53	Strategies and approaches in plasmidome studiesââ,¬â€uncovering plasmid diversity disregarding of linear elements?. Frontiers in Microbiology, 2015, 6, 463	3.5	42
54	Complete Genome Sequence of the Linear Plasmid pJD12 Hosted by <i>Micrococcus</i> sp. D12, Isolated from a High-Altitude Volcanic Lake in Argentina. Genome Announcements, 2015, 3, .	0.8	11

#	Article	IF	CITATIONS
55	Diurnal variation in bacterioplankton composition and DNA damage in the microbial community from an Andean oligotrophic lake. Revista Argentina De Microbiologia, 2014, 46, 358-362.	0.7	4
56	Draft Genome Sequence of the Polyextremophilic Halorubrum sp. Strain AJ67, Isolated from Hyperarsenic Lakes in the Argentinian Puna. Genome Announcements, 2014, 2, .	0.8	12
57	Triacylglycerol accumulation and oxidative stress in Rhodococcus species: differential effects of pro-oxidants on lipid metabolism. Extremophiles, 2014, 18, 375-384.	2.3	27
58	Genomic and phenotypic attributes of novel salinivibrios from stromatolites, sediment and water from a high altitude lake. BMC Genomics, 2014, 15, 473.	2.8	43
59	First characterisation of a CPD-class I photolyase from a UV-resistant extremophile isolated from High-Altitude Andean Lakes. Photochemical and Photobiological Sciences, 2014, 13, 739-751.	2.9	32
60	Microbial Characterization of Microbial Ecosystems Associated to Evaporites Domes of Gypsum in Salar de Llamara in Atacama Desert. Microbial Ecology, 2014, 68, 483-494.	2.8	68
61	Extrachromosomal genetic elements in Micrococcus. Applied Microbiology and Biotechnology, 2013, 97, 63-75.	3.6	36
62	Peritidal cyclic sedimentation from La Manga Formation (Oxfordian), Neuquén Basin, Mendoza, Argentina. Journal of South American Earth Sciences, 2013, 47, 1-11.	1.4	15
63	Lipid storage in high-altitude Andean Lakes extremophiles and its mobilization under stress conditions in Rhodococcus sp. A5, a UV-resistant actinobacterium. Extremophiles, 2013, 17, 217-227.	2.3	60
64	The Discovery of Stromatolites Developing at 3570 m above Sea Level in a High-Altitude Volcanic Lake Socompa, Argentinean Andes. PLoS ONE, 2013, 8, e53497.	2.5	118
65	Proteomic approach of adaptive response to arsenic stress in Exiguobacterium sp. S17, an extremophile strain isolated from a high-altitude Andean Lake stromatolite. Extremophiles, 2013, 17, 421-431.	2.3	68
66	Complete Genome Sequence of pAP13, a Large Linear Plasmid of a <i>Brevibacterium</i> Strain Isolated from a Saline Lake at 4,200 Meters above Sea Level in Argentina. Genome Announcements, 2013, 1, .	0.8	14
67	Draft Genome Sequence of the Polyextremophilic <i>Exiguobacterium</i> sp. Strain S17, Isolated from Hyperarsenic Lakes in the Argentinian Puna. Genome Announcements, 2013, 1, .	0.8	57
68	The potential for microbial life in the highestâ€elevation (>6000Âm.a.s.l.) mineral soils of the Atacama region. Journal of Geophysical Research, 2012, 117, .	3.3	67
69	Extremophilic Acinetobacter Strains from High-Altitude Lakes in Argentinean Puna: Remarkable UV-B Resistance and Efficient DNA Damage Repair. Origins of Life and Evolution of Biospheres, 2012, 42, 201-221.	1.9	62
70	UVB Photoprotective Role of Mycosporines in Yeast: Photostability and Antioxidant Activity of Mycosporine-Glutaminol-Glucoside. Radiation Research, 2011, 175, 44-50.	1.5	43
71	Modern Stromatolite Ecosystems at Alkaline and Hypersaline High-Altitude Lakes in the Argentinean Puna. Cellular Origin and Life in Extreme Habitats, 2011, , 427-441.	0.3	20
72	Genome Sequence of Sphingomonas sp. S17, Isolated from an Alkaline, Hyperarsenic, and Hypersaline Volcano-Associated Lake at High Altitude in the Argentinean Puna. Journal of Bacteriology, 2011, 193, 3686-3687.	2.2	38

MarÃa Eugenia FarÃas

#	Article	IF	CITATIONS
73	UV-resistant Acinetobacter sp. isolates from Andean wetlands display high catalase activity. FEMS Microbiology Letters, 2011, 317, 181-189.	1.8	42
74	Halomonas vilamensis sp. nov., isolated from high-altitude Andean lakes. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 1211-1217.	1.7	24
75	Structural peculiarities of linear megaplasmid, pLMA1, from Micrococcus luteus interfere with pyrosequencing reads assembly. Biotechnology Letters, 2010, 32, 1853-1862.	2.2	14
76	First report of linear megaplasmids in the genus Micrococcus. Plasmid, 2010, 63, 40-45.	1.4	24
77	Novel linear megaplasmid from <i>Brevibacterium</i> sp. isolated from extreme environment. Journal of Basic Microbiology, 2010, 50, 280-284.	3.3	23
78	Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin. Photochemical and Photobiological Sciences, 2010, 9, 1145-1151.	2.9	91
79	Molecular characterization and in situ detection of bacterial communities associated with rhizosphere soil of high altitude native Poaceae from the Andean Puna region. Journal of Arid Environments, 2010, 74, 1177-1185.	2.4	15
80	Isolation of Bacteria from Remote High Altitude Andean Lakes Able to Grow in the Presence of Antibiotics. Recent Patents on Anti-infective Drug Discovery, 2009, 4, 66-76.	0.8	47
81	Isolation of UV-B resistant bacteria from two high altitude Andean lakes (4,400 m) with saline and non saline conditions. Journal of General and Applied Microbiology, 2009, 55, 447-458.	0.7	71
82	Extremophile Culture Collection from Andean Lakes: Extreme Pristine Environments that Host a Wide Diversity of Microorganisms with Tolerance to UV Radiation. Microbial Ecology, 2009, 58, 461-473.	2.8	121
83	Impact of solar radiation on bacterioplankton in Laguna Vilama, a hypersaline Andean lake (4650 m). Journal of Geophysical Research, 2009, 114, .	3.3	24
84	Occurrence of Resistance to Antibiotics, UV-B, and Arsenic in Bacteria Isolated from Extreme Environments in High-Altitude (Above 4400Âm) Andean Wetlands. Current Microbiology, 2008, 56, 510-517.	2.2	119
85	Role of Polyphosphates in Microbial Adaptation to Extreme Environments. Applied and Environmental Microbiology, 2008, 74, 5867-5874.	3.1	179
86	Investigating microbial diversity and UV radiation impact at the high-altitude Lake Aguas Calientes, Chile. Proceedings of SPIE, 2007, , .	0.8	12
87	Solar UV radiation modulates daily production and DNA damage of marine bacterioplankton from a productive upwelling zone (36ŰS), Chile. Journal of Experimental Marine Biology and Ecology, 2007, 343, 82-95.	1.5	29
88	Diverse UV-B Resistance of Culturable Bacterial Community from High-Altitude Wetland Water. Current Microbiology, 2006, 52, 359-362.	2.2	67
89	Features of the Plasmid pMV158-encoded MobM, a Protein Involved in its Mobilization. Journal of Molecular Biology, 2004, 335, 733-743.	4.2	26
90	The tra Region of the Conjugative Plasmid pIP501 Is Organized in an Operon with the First Gene Encoding the Relaxase. Journal of Bacteriology, 2002, 184, 1801-1805.	2.2	38