Fatih Deniz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3722475/publications.pdf Version: 2024-02-01

Ελτίμ Πενίζ

#	Article	IF	CITATIONS
1	Effective cleaning of a hazardous synthetic triarylmethane-type dye from aquatic environment with a multifunctional waste biomass–based biosorbent. Biomass Conversion and Biorefinery, 2023, 13, 10885-10892.	2.9	6
2	Application of biorefinery by-product of <i>Nigella sativa</i> L. herb for green treatment of synthetic dye impurity in aquatic environment: a circular economy based approach to water purification. International Journal of Phytoremediation, 2023, 25, 27-35.	1.7	1
3	Green purification of heavy metal pollution from aquatic environment by biorefinery waste biomass of Nigella sativa L.: A novel and effective treatment agent. Environmental Technology and Innovation, 2022, 25, 102118.	3.0	9
4	A novel biowaste-based biosorbent material for effective purification of methylene blue from water environment. International Journal of Phytoremediation, 2022, 24, 1243-1250.	1.7	4
5	Purification of malachite green as a model biocidal agent from aqueous system by using a natural widespread coastal biowaste (<i>Zostera marina</i>). International Journal of Phytoremediation, 2021, 23, 1-8.	1.7	1
6	Sustainable environmental remediation approach for biocide removal from water medium: a model biosorption study using activated biological waste. International Journal of Phytoremediation, 2021, 23, 111-118.	1.7	2
7	An economical and effective alternative to commercial activated carbon for treatment of synthetic dye pollution in aquatic environment: surfactant modified waste product of <i>Zostera marina</i> . International Journal of Phytoremediation, 2021, 23, 530-538.	1.7	5
8	A renewable biosorbent material for green decontamination of heavy metal pollution from aquatic medium: a case study on manganese removal. International Journal of Phytoremediation, 2021, 23, 231-237.	1.7	5
9	A low-cost and eco-friendly biosorbent material for effective synthetic dye removal from aquatic environment: characterization, optimization, kinetic, isotherm and thermodynamic studies. International Journal of Phytoremediation, 2020, 22, 353-362.	1.7	5
10	An Effectual Biosorbent Substance for Removal of Manganese Ions from Aquatic Environment: A Promising Environmental Remediation Study with Activated Coastal Waste of <i>Zostera marina</i> Plant. BioMed Research International, 2020, 2020, 1-8.	0.9	4
11	Bioremediation potential of a widespread industrial biowaste as renewable and sustainable biosorbent for synthetic dye pollution. International Journal of Phytoremediation, 2019, 21, 259-267.	1.7	7
12	Taguchi DoE methodology for modeling of synthetic dye biosorption from aqueous effluents: parametric and phenomenological studies. International Journal of Phytoremediation, 2019, 21, 1065-1071.	1.7	2
13	Bioremediation potential of waste biomaterials originating from coastal Zostera marina L. meadows for polluted aqueous media with industrial effluents. Progress in Biophysics and Molecular Biology, 2019, 145, 78-84.	1.4	7
14	A natural macroalgae consortium for biosorption of copper from aqueous solution: Optimization, modeling and design studies. International Journal of Phytoremediation, 2018, 20, 362-368.	1.7	6
15	Application of a novel phyco-composite biosorbent for the biotreatment of aqueous medium polluted with manganese ions. International Journal of Phytoremediation, 2018, 20, 138-144.	1.7	3
16	An ecofriendly approach for bioremediation of contaminated water environment: Potential contribution of a coastal seaweed community to environmental improvement. International Journal of Phytoremediation, 2018, 20, 256-263.	1.7	15
17	Bioremoval of Malachite green from water sample by forestry waste mixture as potential biosorbent. Microchemical Journal, 2017, 132, 172-178.	2.3	53
18	Exploration of biosorption potential of forest industry by-product for removal of reactive dye from aqueous solution. Fibers and Polymers, 2017, 18, 278-284.	1.1	5

Fatih Deniz

#	Article	IF	CITATIONS
19	A Novel Eco-Biosorbent for Decontamination of Hazardous Dye from Aqueous Medium. Journal of Polymers and the Environment, 2017, 25, 1242-1250.	2.4	3
20	A promising biosorbent for biosorption of a model hetero-bireactive dye from aqueous medium. Fibers and Polymers, 2017, 18, 476-482.	1.1	7
21	Biosorption of Food Green 3 by a novel green generation composite biosorbent from aqueous environment. International Journal of Phytoremediation, 2017, 19, 579-586.	1.7	8
22	Efficiency of Modified Composite Biosorbent for Bioremoval of Phosphate Ions in Aqueous Area: Process Modeling Studies. Journal of Polymers and the Environment, 2017, 25, 649-657.	2.4	1
23	Elimination of a common hazardous dye from aqueous solution by a novel alkaline-treated multi-component biosorbent. Research on Chemical Intermediates, 2017, 43, 561-575.	1.3	1
24	Biosorption of heavy metal ions by chemically modified biomass of coastal seaweed community: Studies on phycoremediation system modeling and design. Ecological Engineering, 2017, 106, 101-108.	1.6	66
25	Dye biosorption onto pistachio by-product: A green environmental engineering approach. Journal of Molecular Liquids, 2016, 219, 194-200.	2.3	50
26	Simultaneous bioremoval of two unsafe dyes from aqueous solution using a novel green composite biosorbent. Microchemical Journal, 2016, 128, 312-319.	2.3	20
27	Removal of colorant from simulated wastewater by phyco-composite material: Equilibrium, kinetic and mechanism studies in a lab-scale application. Journal of Molecular Liquids, 2016, 220, 120-128.	2.3	6
28	Application of residual shell biomass of pistachio for dye biosorption from aquatic environment. Journal of Biotechnology, 2016, 231, S12.	1.9	1
29	Evaluation of Calabrian pine sawdust by-product as potential dye biosorbent. New Biotechnology, 2016, 33, S145.	2.4	2
30	Biosorption of dye from synthetic wastewater using alga enriched in phenolic compounds. Environmental Progress and Sustainable Energy, 2016, 35, 737-742.	1.3	8
31	Equilibrium and kinetic studies of azo dye molecules biosorption on phycocyanin-extracted residual biomass of microalgaSpirulina platensis. Desalination and Water Treatment, 2016, 57, 12257-12263.	1.0	11
32	Dye biosorption from water employing chemically modified calabrian pine cone shell as an effective biosorbent. Environmental Progress and Sustainable Energy, 2015, 34, 1267-1278.	1.3	8
33	Bioremediation of contaminated water with unnatural dye using blueâ€green alga <i>spirulina platensis</i> . Environmental Progress and Sustainable Energy, 2015, 34, 1414-1419.	1.3	8
34	Optimization of Biosorptive Removal of Dye from Aqueous System by Cone Shell of Calabrian Pine. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	18
35	Effective removal of maxilon red grl from aqueous solutions by walnut shell: Nonlinear kinetic and equilibrium models. Environmental Progress and Sustainable Energy, 2014, 33, 396-401.	1.3	9
36	Potential use of shell biomass (<i>Juglans regia</i> L.) for dye removal: Relationships between kinetic pseudo-second-order model parameters and biosorption efficiency. Desalination and Water Treatment, 2014, 52, 219-226.	1.0	8

Fatih Deniz

#	Article	IF	CITATIONS
37	Optimization of Biosorption Conditions for Color Removal by Taguchi <scp>DOE</scp> Methodology. Environmental Progress and Sustainable Energy, 2013, 32, 1129-1133.	1.3	8
38	Color removal from aqueous solutions of metal-containing dye using pine cone. Desalination and Water Treatment, 2013, 51, 4573-4581.	1.0	15
39	Optimization of methyl orange bioremoval by <i>Prunus amygdalus</i> L. (almond) shell waste: Taguchi methodology approach and biosorption system design. Desalination and Water Treatment, 2013, 51, 7067-7073.	1.0	9
40	Dye removal by almond shell residues: Studies on biosorption performance and process design. Materials Science and Engineering C, 2013, 33, 2821-2826.	3.8	41
41	Adsorption Properties of Low-Cost Biomaterial Derived from <i>Prunus amygdalus</i> L. for Dye Removal from Water. Scientific World Journal, The, 2013, 2013, 1-8.	0.8	36
42	Removal of an azo-metal complex textile dye from colored aqueous solutions using an agro-residue. Microchemical Journal, 2011, 99, 296-302.	2.3	51
43	Response to Copper and Sodium Chloride Excess in Spirulina sp. (Cyanobacteria). Bulletin of Environmental Contamination and Toxicology, 2011, 87, 11-15.	1.3	23
44	Removal of Basic Red 46 dye from aqueous solution by pine tree leaves. Chemical Engineering Journal, 2011, 170, 67-74.	6.6	161
45	Removal of a hazardous azo dye (Basic Red 46) from aqueous solution by princess tree leaf. Desalination, 2011, 268, 6-11.	4.0	91
46	Biosorption of a model basic dye onto Pinus brutia Ten.: Evaluating of equilibrium, kinetic and thermodynamic data. Desalination, 2011, 270, 199-205.	4.0	32
47	Equilibrium, kinetic and thermodynamic studies of Acid Orange 52 dye biosorption by Paulownia tomentosa Steud. leaf powder as a low-cost natural biosorbent. Bioresource Technology, 2010, 101, 5137-5143.	4.8	79
48	Investigation of adsorption characteristics of Basic Red 46 onto gypsum: Equilibrium, kinetic and thermodynamic studies. Desalination, 2010, 262, 161-165.	4.0	41
49	Effect of 24-epibrassinolide on biomass, growth and free proline concentration in SpirulinaÂplatensis (Cyanophyta) under NaCl stress. Plant Growth Regulation, 2008, 56, 219-223.	1.8	25
50	Integration of biosorption operation with biorefinery and biofuel production processes in context of bioeconomy and zero-waste approaches: a pre-feasibility study on Nigella sativa L. Biomass Conversion and Biorefinery, 0, , 1.	2.9	1