Peng Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3721688/publications.pdf

Version: 2024-02-01

81434 78623 12,809 79 41 77 h-index citations g-index papers 92 92 92 12396 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	DNA Input Classification by a Riboregulator-Based Cell-Free Perceptron. ACS Synthetic Biology, 2022, 11, 1510-1520.	1.9	8
2	Sub-3-Ã cryo-EM structure of RNA enabled by engineered homomeric self-assembly. Nature Methods, 2022, 19, 576-585.	9.0	21
3	Abstract 5648: Response and resistance to CDK2 and CDK4/6 inhibition in GIST. Cancer Research, 2022, 82, 5648-5648.	0.4	0
4	Superâ€Resolution Spatial Proximity Detection with Proximityâ€PAINT. Angewandte Chemie - International Edition, 2021, 60, 716-720.	7.2	8
5	Anomalous COVID-19 tests hinder researchers. Science, 2021, 371, 244-245.	6.0	11
6	Three-dimensional nanolithography guided by DNA modular epitaxy. Nature Materials, 2021, 20, 683-690.	13.3	29
7	Cell-Free Characterization of Coherent Feed-Forward Loop-Based Synthetic Genetic Circuits. ACS Synthetic Biology, 2021, 10, 1406-1416.	1.9	15
8	The emerging landscape of single-molecule protein sequencing technologies. Nature Methods, 2021, 18, 604-617.	9.0	198
9	Laboratory-Generated DNA Can Cause Anomalous Pathogen Diagnostic Test Results. Microbiology Spectrum, 2021, 9, e0031321.	1.2	10
10	Understanding Förster Resonance Energy Transfer in the Sheet Regime with DNA Brick-Based Dye Networks. ACS Nano, 2021, 15, 16452-16468.	7.3	14
11	Enhancing Biocompatible Stability of DNA Nanostructures Using Dendritic Oligonucleotides and Brick Motifs. Angewandte Chemie - International Edition, 2020, 59, 700-703.	7.2	46
12	Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard. Nature Communications, 2020, 11, 5768.	5.8	33
13	Three-dimensional nanoscopy of whole cells and tissues with in situ point spread function retrieval. Nature Methods, 2020, 17, 531-540.	9.0	64
14	Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science, 2020, 368, 874-877.	6.0	97
15	Dynamic Genome Editing Using In Vivo Synthesized Donor ssDNA in Escherichia coli. Cells, 2020, 9, 467.	1.8	2
16	3D Freestanding DNA Nanostructure Hybrid as a Low-Density High-Strength Material. ACS Nano, 2020, 14, 6582-6588.	7.3	12
17	Axial plane single-molecule super-resolution microscopy of whole cells. Biomedical Optics Express, 2020, 11, 461.	1.5	12
18	Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nature Biotechnology, 2019, 37, 1080-1090.	9.4	301

#	Article	IF	CITATIONS
19	Rotation tracking of genome-processing enzymes using DNA origami rotors. Nature, 2019, 572, 136-140.	13.7	79
20	Programmable CRISPR-Cas Repression, Activation, and Computation with Sequence-Independent Targets and Triggers. ACS Synthetic Biology, 2019, 8, 1583-1589.	1.9	36
21	De novo-designed translation-repressing riboregulators for multi-input cellular logic. Nature Chemical Biology, 2019, 15, 1173-1182.	3.9	90
22	Rapid in vitro production of single-stranded DNA. Nucleic Acids Research, 2019, 47, 11956-11962.	6.5	22
23	Super-resolution labelling with Action-PAINT. Nature Chemistry, 2019, 11, 1001-1008.	6.6	20
24	SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nature Methods, 2019, 16, 533-544.	9.0	271
25	Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Nature, 2019, 567, 366-372.	13.7	198
26	124-Color Super-resolution Imaging by Engineering DNA-PAINT Blinking Kinetics. Nano Letters, 2019, 19, 2641-2646.	4.5	82
27	Voices in methods development. Nature Methods, 2019, 16, 945-951.	9.0	5
28	OligoMiner provides a rapid, flexible environment for the design of genome-scale oligonucleotide in situ hybridization probes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2183-E2192.	3.3	168
29	Ribocomputing: Cellular Logic Computation Using RNA Devices. Biochemistry, 2018, 57, 883-885.	1.2	29
30	Programmable autonomous synthesis of single-stranded DNA. Nature Chemistry, 2018, 10, 155-164.	6.6	190
31	Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genetics, 2018, 14, e1007872.	1.5	209
32	Programming molecular topologies from single-stranded nucleic acids. Nature Communications, 2018, 9, 4579.	5.8	39
33	Superâ€resolution Geometric Barcoding for Multiplexed miRNA Profiling. Angewandte Chemie, 2018, 130, 14271-14275.	1.6	4
34	Superâ€resolution Geometric Barcoding for Multiplexed miRNA Profiling. Angewandte Chemie - International Edition, 2018, 57, 14075-14079.	7.2	23
35	Hierarchical Assembly of DNA Nanostructures Based on Four-Way Toehold-Mediated Strand Displacement. Nano Letters, 2018, 18, 4791-4795.	4.5	12
36	Advanced Cell and Tissue Biomanufacturing. ACS Biomaterials Science and Engineering, 2018, 4, 2292-2307.	2.6	14

#	Article	IF	Citations
37	Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod. ACS Nano, 2017, 11, 1172-1179.	7.3	129
38	Universal Superâ€Resolution Multiplexing by DNA Exchange. Angewandte Chemie - International Edition, 2017, 56, 4052-4055.	7.2	79
39	DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chemical Science, 2017, 8, 3080-3091.	3.7	172
40	Sub–100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA. Science Advances, 2017, 3, e1602128.	4.7	58
41	Barcode extension for analysis and reconstruction of structures. Nature Communications, 2017, 8, 14698.	5.8	17
42	DNA Nanostructures-Mediated Molecular Imprinting Lithography. ACS Nano, 2017, 11, 227-238.	7.3	43
43	A DNA nanoscope via auto-cycling proximity recording. Nature Communications, 2017, 8, 696.	5.8	36
44	In Situ Super-Resolution Imaging of Genomic DNA with OligoSTORM and OligoDNA-PAINT. Methods in Molecular Biology, 2017, 1663, 231-252.	0.4	69
45	Rapid Sequential in Situ Multiplexing with DNA Exchange Imaging in Neuronal Cells and Tissues. Nano Letters, 2017, 17, 6131-6139.	4.5	116
46	Multiplexed Exchange-PAINT imaging reveals ligand-dependent EGFR and Met interactions in the plasma membrane. Scientific Reports, 2017, 7, 12150.	1.6	29
47	Universelles Superauflösungsâ€Multiplexing durch DNAâ€Austausch. Angewandte Chemie, 2017, 129, 4111-4114.	1.6	8
48	Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT. Nature Communications, 2017, 8, 2090.	5.8	125
49	Single-stranded DNA and RNA origami. Science, 2017, 358, .	6.0	202
50	Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature, 2017, 552, 72-77.	13.7	335
51	Complex cellular logic computation using ribocomputing devices. Nature, 2017, 548, 117-121.	13.7	321
52	Optical imaging of individual biomolecules in densely packed clusters. Nature Nanotechnology, 2016, 11, 798-807.	15.6	204
53	Ribocomputing devices for sophisticated in vivo logic computation. , 2016, , .		1
54	Genetic encoding of DNA nanostructures and their self-assembly in living bacteria. Nature Communications, 2016, 7, 11179.	5.8	65

#	Article	IF	CITATIONS
55	Quantitative super-resolution imaging with qPAINT. Nature Methods, 2016, 13, 439-442.	9.0	328
56	Programmably Shaped Carbon Nanostructure from Shape-Conserving Carbonization of DNA. ACS Nano, 2016, 10, 3069-3077.	7. 3	37
57	DyNAMiC Workbench: an integrated development environment for dynamic DNA nanotechnology. Journal of the Royal Society Interface, 2015, 12, 20150580.	1.5	17
58	Self-assembly of Complex Two-dimensional Shapes from Single-stranded DNA Tiles. Journal of Visualized Experiments, 2015, , e52486.	0.2	4
59	A Compact DNA Cube with Side Length 10 nm. Small, 2015, 11, 5200-5205.	5.2	22
60	Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nature Communications, 2015, 6, 7147.	5.8	329
61	Routing of individual polymers in designed patterns. Nature Nanotechnology, 2015, 10, 892-898.	15.6	189
62	Nanolithography Based on Metalized DNA Templates for Graphene Patterning. Current Protocols in Chemical Biology, 2014, 6, 53-64.	1.7	1
63	Polyhedra Self-Assembled from DNA Tripods and Characterized with 3D DNA-PAINT. Science, 2014, 344, 65-69.	6.0	299
64	Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nature Methods, 2014, 11, 313-318.	9.0	881
65	Paper-Based Synthetic Gene Networks. Cell, 2014, 159, 940-954.	13.5	597
66	Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell, 2014, 159, 925-939.	13.5	646
67	DNA brick crystals with prescribed depths. Nature Chemistry, 2014, 6, 994-1002.	6.6	182
68	Complex Reconfiguration of DNA Nanostructures. Angewandte Chemie - International Edition, 2014, 53, 7475-7479.	7.2	21
69	Casting inorganic structures with DNA molds. Science, 2014, 346, 1258361.	6.0	251
70	Design Space for Complex DNA Structures. Journal of the American Chemical Society, 2013, 135, 18080-18088.	6.6	36
71	Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning. Nature Communications, 2013, 4, 1663.	5.8	155
72	Nanoscale Growth and Patterning of Inorganic Oxides Using DNA Nanostructure Templates. Journal of the American Chemical Society, 2013, 135, 6778-6781.	6.6	97

#	Article	IF	CITATIONS
73	2SBA-02 Programming Nucleic Acids Self-Assembly(2SBA Reconstitution of life phenomena in a) Tj ETQq1 1 0.784	1314 rgBT 0.0	/Overlock 1 0
74	Three-Dimensional Structures Self-Assembled from DNA Bricks. Science, 2012, 338, 1177-1183.	6.0	1,062
75	Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nature Chemistry, 2012, 4, 832-839.	6.6	252
76	Optimizing the specificity of nucleic acid hybridization. Nature Chemistry, 2012, 4, 208-214.	6.6	347
77	Complex shapes self-assembled from single-stranded DNA tiles. Nature, 2012, 485, 623-626.	13.7	835
78	Programming biomolecular self-assembly pathways. Nature, 2008, 451, 318-322.	13.7	1,339
79	Programming DNA Tube Circumferences. Science, 2008, 321, 824-826.	6.0	435