Xiaosong Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3721596/publications.pdf

Version: 2024-02-01

4641 9073 22,314 211 85 144 citations h-index g-index papers 214 214 214 10743 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Correction to the "Integrated control of braking and steering subsystems for autonomous vehicle based on an efficient yaw moment distribution― IEEE Transactions on Industrial Electronics, 2024, , 1-1.	5.2	13
2	Notice of Violation of IEEE Publication Principles: Integrated Control of Braking and Steering Subsystems for Autonomous Vehicle based on an Efficient Yaw Moment Distribution. IEEE Transactions on Industrial Electronics, 2024, , 1-1.	5.2	3
3	Comparison of Decentralized ADMM Optimization Algorithms for Power Allocation in Modular Fuel Cell Vehicles. IEEE/ASME Transactions on Mechatronics, 2022, 27, 3297-3308.	3.7	16
4	Q-Learning-Based Supervisory Control Adaptability Investigation for Hybrid Electric Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 6797-6806.	4.7	20
5	Module-Based Active Equalization for Battery Packs: A Two-Layer Model Predictive Control Strategy. IEEE Transactions on Transportation Electrification, 2022, 8, 149-159.	5.3	19
6	Economic Control for a Residential Photovoltaic-Battery System by Combining Stochastic Model Predictive Control and Improved Correction Strategy. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	1.4	5
7	Multi-fault Detection and Isolation for Lithium-Ion Battery Systems. IEEE Transactions on Power Electronics, 2022, 37, 971-989.	5.4	59
8	An Enhanced Electro-Thermal Model for EV Battery Packs Considering Current Distribution in Parallel Branches. IEEE Transactions on Power Electronics, 2022, 37, 1027-1043.	5.4	16
9	State of health prognostics for series battery packs: A universal deep learning method. Energy, 2022, 238, 121857.	4.5	58
10	Battery Health-Aware and Deep Reinforcement Learning-Based Energy Management for Naturalistic Data-Driven Driving Scenarios. IEEE Transactions on Transportation Electrification, 2022, 8, 948-964.	5.3	30
11	RUBoost-Based Ensemble Machine Learning for Electrode Quality Classification in Li-ion Battery Manufacturing. IEEE/ASME Transactions on Mechatronics, 2022, 27, 2474-2483.	3.7	23
12	The role and application of convex modeling and optimization in electrified vehicles. Renewable and Sustainable Energy Reviews, 2022, 153, 111796.	8.2	16
13	A control strategy for cabin temperature of electric vehicle considering health ventilation for lowering virus infection. International Journal of Thermal Sciences, 2022, 172, 107371.	2.6	9
14	Increasing energy utilization of battery energy storage via active multivariable fusion-driven balancing. Energy, 2022, 243, 122772.	4.5	6
15	An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery. Energy, 2022, 244, 122627.	4.5	49
16	Predictive energy management for plug-in hybrid electric vehicles considering electric motor thermal dynamics. Energy Conversion and Management, 2022, 251, 115022.	4.4	35
17	Data-Driven Battery State of Health Estimation Based on Random Partial Charging Data. IEEE Transactions on Power Electronics, 2022, 37, 5021-5031.	5.4	106
18	An Online SOC-SOTD Joint Estimation Algorithm for Pouch Li-Ion Batteries Based on Spatio-Temporal Coupling Correction Method. IEEE Transactions on Power Electronics, 2022, 37, 7370-7386.	5.4	14

#	Article	IF	Citations
19	Multi-Objective Design Optimization of a Novel Dual-Mode Power-Split Hybrid Powertrain. IEEE Transactions on Vehicular Technology, 2022, 71, 282-296.	3.9	14
20	Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification. Energy Storage Materials, 2022, 45, 952-968.	9.5	58
21	Lifetime and Aging Degradation Prognostics for Lithium-ion Battery Packs Based on a Cell to Pack Method. Chinese Journal of Mechanical Engineering (English Edition), 2022, 35, .	1.9	30
22	Visual Detection and Deep Reinforcement Learning-Based Car Following and Energy Management for Hybrid Electric Vehicles. IEEE Transactions on Transportation Electrification, 2022, 8, 2501-2515.	5.3	33
23	Battery health estimation with degradation pattern recognition and transfer learning. Journal of Power Sources, 2022, 525, 231027.	4.0	110
24	Real-Time Multiobjective Energy Management for Electrified Powertrains: A Convex Optimization-Driven Predictive Approach. IEEE Transactions on Transportation Electrification, 2022, 8, 3139-3150.	5.3	8
25	A Platoon Control Method Based on DMPC for Connected Energy-Saving Electric Vehicles. IEEE Transactions on Transportation Electrification, 2022, 8, 3219-3235.	5.3	11
26	Real-time energy optimization of HEVs under-connected environment: a benchmark problem and receding horizon-based solution. Control Theory and Technology, 2022, 20, 145-160.	1.0	7
27	Hierarchical predictive control for electric vehicles with hybrid energy storage system under vehicle-following scenarios. Energy, 2022, 251, 123774.	4.5	24
28	Battery health evaluation using a short random segment of constant current charging. IScience, 2022, 25, 104260.	1.9	23
29	Preface for Feature Topic on Advanced Battery Management for Electric Vehicles. Automotive Innovation, 2022, 5, 105-106.	3.1	6
30	A Review of Second-Life Lithium-Ion Batteries for Stationary Energy Storage Applications. Proceedings of the IEEE, 2022, 110, 735-753.	16.4	47
31	A Novel Sensitivity Analysis to Moment of Inertia and Load Variations for PMSM Drives. IEEE Transactions on Power Electronics, 2022, 37, 13299-13309.	5.4	4
32	A Review of Modeling, Management, and Applications of Grid-Connected Li-Ion Battery Storage Systems. IEEE Transactions on Smart Grid, 2022, 13, 4505-4524.	6.2	32
33	Battery Lifetime Prediction and Capacity Estimation Based on Entropy and Bayesian Neural Networks. , 2022, , .		0
34	State of charge estimation by square root cubature particle filter approach with fractional order model of lithium-ion battery. Science China Technological Sciences, 2022, 65, 1760-1771.	2.0	9
35	Convex optimization-based predictive and bi-level energy management for plug-in hybrid electric vehicles. Energy, 2022, 257, 124672.	4.5	12
36	Data efficient health prognostic for batteries based on sequential information-driven probabilistic neural network. Applied Energy, 2022, 323, 119663.	5.1	43

3

#	Article	IF	CITATIONS
37	A Neural Network Based Method for Thermal Fault Detection in Lithium-Ion Batteries. IEEE Transactions on Industrial Electronics, 2021, 68, 4068-4078.	5.2	52
38	Cybersecurity of Plug-In Electric Vehicles: Cyberattack Detection During Charging. IEEE Transactions on Industrial Electronics, 2021, 68, 478-487.	5.2	31
39	Naturalistic Data-Driven Predictive Energy Management for Plug-In Hybrid Electric Vehicles. IEEE Transactions on Transportation Electrification, 2021, 7, 497-508.	5.3	95
40	Adaptive energy management in automated hybrid electric vehicles with flexible torque request. Energy, 2021, 214, 118873.	4.5	48
41	A Control-Oriented Electrothermal Model for Pouch-Type Electric Vehicle Batteries. IEEE Transactions on Power Electronics, 2021, 36, 5530-5544.	5.4	26
42	A Reduced-Order Electrochemical Model for All-Solid-State Batteries. IEEE Transactions on Transportation Electrification, 2021, 7, 464-473.	5.3	55
43	Dimensioning and Power Management of Hybrid Energy Storage Systems for Electric Vehicles With Multiple Optimization Criteria. IEEE Transactions on Power Electronics, 2021, 36, 5545-5556.	5.4	34
44	Hybrid electrochemical energy storage systems: An overview for smart grid and electrified vehicle applications. Renewable and Sustainable Energy Reviews, 2021, 139, 110581.	8.2	97
45	General Discharge Voltage Information Enabled Health Evaluation for Lithium-Ion Batteries. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1295-1306.	3.7	108
46	Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends. Renewable and Sustainable Energy Reviews, 2021, 138, 110480.	8.2	170
47	Battery Health Prediction Using Fusion-Based Feature Selection and Machine Learning. IEEE Transactions on Transportation Electrification, 2021, 7, 382-398.	5.3	156
48	Feature Analyses and Modeling of Lithium-Ion Battery Manufacturing Based on Random Forest Classification. IEEE/ASME Transactions on Mechatronics, 2021, 26, 2944-2955.	3.7	103
49	A Particle Filter and Long Short-Term Memory Fusion Technique for Lithium-Ion Battery Remaining Useful Life Prediction. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2021, 143, .	0.9	22
50	Predictive Battery Health Management With Transfer Learning and Online Model Correction. IEEE Transactions on Vehicular Technology, 2021, 70, 1269-1277.	3.9	110
51	Improving Ride Comfort and Fuel Economy of Connected Hybrid Electric Vehicles Based on Traffic Signals and Real Road Information. IEEE Transactions on Vehicular Technology, 2021, 70, 3101-3112.	3.9	51
52	A Voltage Fault Detection Method Enabled by A Recurrent Neural Network and Residual Threshold Monitor for Lithium-ion Batteries. , 2021, , .		1
53	Active Cell Equalization Topologies Analysis for Battery Packs: A Systematic Review. IEEE Transactions on Power Electronics, 2021, 36, 9119-9135.	5.4	89
54	Sensitivity Analysis and Joint Estimation of Parameters and States for All-Solid-State Batteries. IEEE Transactions on Transportation Electrification, 2021, 7, 1314-1323.	5.3	49

#	Article	IF	CITATIONS
55	Improving the Air-Cooling Performance for Battery Packs via Electrothermal Modeling and Particle Swarm Optimization. IEEE Transactions on Transportation Electrification, 2021, 7, 1285-1302.	5.3	10
56	Powertrain Design and Control in Electrified Vehicles: A Critical Review. IEEE Transactions on Transportation Electrification, 2021, 7, 1990-2009.	5.3	54
57	Lithium Plating Mechanism, Detection, and Mitigation in Lithium-Ion Batteries. Progress in Energy and Combustion Science, 2021, 87, 100953.	15.8	117
58	Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data. Energy, 2021, 234, 121266.	4.5	73
59	Research directions for next-generation battery management solutions in automotive applications. Renewable and Sustainable Energy Reviews, 2021, 152, 111695.	8.2	24
60	Computationally Efficient Energy Management for Hybrid Electric Vehicles Using Model Predictive Control and Vehicle-to-Vehicle Communication. IEEE Transactions on Vehicular Technology, 2021, 70, 237-250.	3.9	34
61	Joint Estimation of Inconsistency and State of Health for Series Battery Packs. Automotive Innovation, 2021, 4, 103-116.	3.1	32
62	Battery Health Estimation Using Electrochemical Aging Model and Ensemble Kalman Filtering., 2021,,.		0
63	Distributed Collaborative Control of Multiple Smart Homes via Consensus ADMM., 2021,,.		1
64	Cost-Optimal Energy Management of Hybrid Electric Vehicles Using Fuel Cell/Battery Health-Aware Predictive Control. IEEE Transactions on Power Electronics, 2020, 35, 382-392.	5.4	254
65	An improved resistance-based thermal model for a pouch lithium-ion battery considering heat generation of posts. Applied Thermal Engineering, 2020, 164, 114455.	3.0	90
66	Novel Mesoscale Electrothermal Modeling for Lithium-Ion Batteries. IEEE Transactions on Power Electronics, 2020, 35, 2595-2614.	5.4	44
67	Gaussian Process Regression With Automatic Relevance Determination Kernel for Calendar Aging Prediction of Lithium-lon Batteries. IEEE Transactions on Industrial Informatics, 2020, 16, 3767-3777.	7.2	233
68	An enhanced multi-state estimation hierarchy for advanced lithium-ion battery management. Applied Energy, 2020, 257, 114019.	5.1	115
69	Battery Lifetime Prognostics. Joule, 2020, 4, 310-346.	11.7	570
70	Aging-aware co-optimization of battery size, depth of discharge, and energy management for plug-in hybrid electric vehicles. Journal of Power Sources, 2020, 450, 227638.	4.0	63
71	The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection. Energy, 2020, 193, 116732.	4.5	44
72	Battery warm-up methodologies at subzero temperatures for automotive applications: Recent advances and perspectives. Progress in Energy and Combustion Science, 2020, 77, 100806.	15.8	218

#	Article	IF	Citations
73	Guest Editorial: Special Section on Advanced Informatics for Energy Storage Systems in Electrified Vehicles and Smart Grids. IEEE Transactions on Industrial Informatics, 2020, 16, 3330-3334.	7.2	1
74	Advanced Fault Diagnosis for Lithium-lon Battery Systems: A Review of Fault Mechanisms, Fault Features, and Diagnosis Procedures. IEEE Industrial Electronics Magazine, 2020, 14, 65-91.	2.3	260
75	Power Allocation Strategy Based on Decentralized Convex Optimization in Modular Fuel Cell Systems for Vehicular Applications. IEEE Transactions on Vehicular Technology, 2020, 69, 14563-14574.	3.9	44
76	Battery aging- and temperature-aware predictive energy management for hybrid electric vehicles. Journal of Power Sources, 2020, 473, 228568.	4.0	68
77	An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries. Renewable and Sustainable Energy Reviews, 2020, 131, 110017.	8.2	80
78	IEEE Access Special Section Editorial: Battery Energy Storage and Management Systems. IEEE Access, 2020, 8, 123098-123103.	2.6	1
79	Convex programming improved online power management in a range extended fuel cell electric truck. Journal of Power Sources, 2020, 476, 228642.	4.0	24
80	An improved resistance-based thermal model for prismatic lithium-ion battery charging. Applied Thermal Engineering, 2020, 180, 115794.	3.0	24
81	Stochastic optimization of a stationary energy storage system for a catenary-free tramline. Applied Energy, 2020, 280, 115711.	5.1	5
82	Ensemble Reinforcement Learning-Based Supervisory Control of Hybrid Electric Vehicle for Fuel Economy Improvement. IEEE Transactions on Transportation Electrification, 2020, 6, 717-727.	5.3	52
83	Designing Multi-Mode Power Split Hybrid Electric Vehicles Using the Hierarchical Topological Graph Theory. IEEE Transactions on Vehicular Technology, 2020, 69, 7159-7171.	3.9	15
84	Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression. Energy, 2020, 205, 118000.	4.5	217
85	An Enhanced Online Temperature Estimation for Lithium-Ion Batteries. IEEE Transactions on Transportation Electrification, 2020, 6, 375-390.	5.3	42
86	Optimal Multistage Charging of NCA/Graphite Lithium-Ion Batteries Based on Electrothermal-Aging Dynamics. IEEE Transactions on Transportation Electrification, 2020, 6, 427-438.	5.3	56
87	A Practical and Comprehensive Evaluation Method for Series-Connected Battery Pack Models. IEEE Transactions on Transportation Electrification, 2020, 6, 391-416.	5.3	27
88	Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering. Applied Energy, 2020, 262, 114569.	5.1	96
89	Model predictive control of hybrid electric vehicles for fuel economy, emission reductions, and inter-vehicle safety in car-following scenarios. Energy, 2020, 196, 117101.	4.5	77
90	Optimisation of a Catenary-Free Tramline Equipped With Stationary Energy Storage Systems. IEEE Transactions on Vehicular Technology, 2020, 69, 2449-2462.	3.9	13

#	Article	IF	Citations
91	Health Prognosis for Electric Vehicle Battery Packs: A Data-Driven Approach. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2622-2632.	3.7	109
92	Computed Tomography Analysis of Li-Ion Battery Case Ruptures. Fire Technology, 2020, 56, 2565-2578.	1.5	24
93	An MPC-Based Control Strategy for Electric Vehicle Battery Cooling Considering Energy Saving and Battery Lifespan. IEEE Transactions on Vehicular Technology, 2020, 69, 14657-14673.	3.9	41
94	Micro-Short-Circuit Diagnosis for Series-Connected Lithium-Ion Battery Packs Using Mean-Difference Model. IEEE Transactions on Industrial Electronics, 2019, 66, 2132-2142.	5.2	167
95	Driving-Style-Based Codesign Optimization of an Automated Electric Vehicle: A Cyber-Physical System Approach. IEEE Transactions on Industrial Electronics, 2019, 66, 2965-2975.	5.2	195
96	State estimation for advanced battery management: Key challenges and future trends. Renewable and Sustainable Energy Reviews, 2019, 114, 109334.	8.2	448
97	Adaptive Hierarchical Energy Management Design for a Plug-In Hybrid Electric Vehicle. IEEE Transactions on Vehicular Technology, 2019, 68, 11513-11522.	3.9	119
98	Adaptively coordinated optimization of battery aging and energy management in plug-in hybrid electric buses. Applied Energy, 2019, 256, 113891.	5.1	80
99	A review of equalization strategies for series battery packs: variables, objectives, and algorithms. Renewable and Sustainable Energy Reviews, 2019, 116, 109464.	8.2	115
100	Modified Gaussian Process Regression Models for Cyclic Capacity Prediction of Lithium-Ion Batteries. IEEE Transactions on Transportation Electrification, 2019, 5, 1225-1236.	5.3	232
101	Reinforcement Learning for Hybrid and Plug-In Hybrid Electric Vehicle Energy Management: Recent Advances and Prospects. IEEE Industrial Electronics Magazine, 2019, 13, 16-25.	2.3	160
102	Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios. Applied Energy, 2019, 251, 113411.	5.1	81
103	Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs. Renewable and Sustainable Energy Reviews, 2019, 112, 102-113.	8.2	173
104	Lithium-ion battery charging management considering economic costs of electrical energy loss and battery degradation. Energy Conversion and Management, 2019, 195, 167-179.	4.4	169
105	Energy management strategies of connected HEVs and PHEVs: Recent progress and outlook. Progress in Energy and Combustion Science, 2019, 73, 235-256.	15.8	298
106	Convex programming energy management and components sizing of a plug-in fuel cell urban logistics vehicle. Journal of Power Sources, 2019, 423, 358-366.	4.0	85
107	A Heuristic Planning Reinforcement Learning-Based Energy Management for Power-Split Plug-in Hybrid Electric Vehicles. IEEE Transactions on Industrial Informatics, 2019, 15, 6436-6445.	7.2	122
108	Model predictive energy management for plug-in hybrid electric vehicles considering optimal battery depth of discharge. Energy, 2019, 173, 667-678.	4.5	128

#	Article	IF	Citations
109	Decentralized Implementation of an Optimal Energy Management Strategy in Interconnected Modular Fuel Cell Systems., 2019,,.		3
110	Global Sensitivity Analysis of Battery Single Particle Model Parameters., 2019,,.		5
111	A Comparative Study of Control-Oriented Thermal Models for Cylindrical Li-Ion Batteries. IEEE Transactions on Transportation Electrification, 2019, 5, 1237-1253.	5. 3	84
112	Modeling and multi-objective optimization of a stand-alone PV-hydrogen-retired EV battery hybrid energy system. Energy Conversion and Management, 2019, 181, 80-92.	4.4	108
113	Pontryagin's Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus. Applied Energy, 2019, 236, 893-905.	5.1	269
114	Optimal Energy Management and Sizing of a Dual Motor-Driven Electric Powertrain. IEEE Transactions on Power Electronics, 2019, 34, 7489-7501.	5.4	76
115	Temporal-Difference Learning-Based Stochastic Energy Management for Plug-in Hybrid Electric Buses. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 2378-2388.	4.7	29
116	Predictive vehicle-following power management for plug-in hybrid electric vehicles. Energy, 2019, 166, 701-714.	4.5	113
117	Fuel economy optimization of power split hybrid vehicles: A rapid dynamic programming approach. Energy, 2019, 166, 929-938.	4.5	92
118	Time-Efficient Stochastic Model Predictive Energy Management for a Plug-In Hybrid Electric Bus With an Adaptive Reference State-of-Charge Advisory. IEEE Transactions on Vehicular Technology, 2018, 67, 5671-5682.	3.9	118
119	Simultaneous Observation of Hybrid States for Cyber-Physical Systems: A Case Study of Electric Vehicle Powertrain. IEEE Transactions on Cybernetics, 2018, 48, 2357-2367.	6.2	93
120	A Bi-Level Control for Energy Efficiency Improvement of a Hybrid Tracked Vehicle. IEEE Transactions on Industrial Informatics, 2018, 14, 1616-1625.	7.2	72
121	Electrochemical Estimation and Control for Lithium-Ion Battery Health-Aware Fast Charging. IEEE Transactions on Industrial Electronics, 2018, 65, 6635-6645.	5.2	155
122	Distributed Adaptive Sliding Mode Control of Vehicular Platoon With Uncertain Interaction Topology. IEEE Transactions on Industrial Electronics, 2018, 65, 6352-6361.	5.2	127
123	Configuration optimization for improving fuel efficiency of power split hybrid powertrains with a single planetary gear. Applied Energy, 2018, 214, 103-116.	5.1	68
124	Integrated System Design and Energy Management of Plug-In Hybrid Electric Vehicles * *Elsevier granted permission to use the full text of Hu et al. (2016b) in this chapter, 2018, , 451-474.		0
125	Integration of EVs With a Smart Grid * *Elsevier granted permission to use the full text of Hu et al. (2017) in this chapter, 2018, , 475-496.		1
126	A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors. Journal of Power Sources, 2018, 390, 286-296.	4.0	367

#	Article	IF	CITATIONS
127	State of Charge-Dependent Polynomial Equivalent Circuit Modeling for Electrochemical Impedance Spectroscopy of Lithium-Ion Batteries. IEEE Transactions on Power Electronics, 2018, 33, 8449-8460.	5.4	92
128	Stochastic Optimal Energy Management of Smart Home With PEV Energy Storage. IEEE Transactions on Smart Grid, 2018, 9, 2065-2075.	6.2	217
129	Condition Monitoring in Advanced Battery Management Systems: Moving Horizon Estimation Using a Reduced Electrochemical Model. IEEE/ASME Transactions on Mechatronics, 2018, 23, 167-178.	3.7	154
130	A review of supercapacitor modeling, estimation, and applications: A control/management perspective. Renewable and Sustainable Energy Reviews, 2018, 81, 1868-1878.	8.2	599
131	Multiobjective Optimal Sizing of Hybrid Energy Storage System for Electric Vehicles. IEEE Transactions on Vehicular Technology, 2018, 67, 1027-1035.	3.9	227
132	Novel Torsional Vibration Modeling and Assessment of a Power-Split Hybrid Electric Vehicle Equipped With a Dual-Mass Flywheel. IEEE Transactions on Vehicular Technology, 2018, 67, 1990-2000.	3.9	120
133	Powering Mode-Integrated Energy Management Strategy for a Plug-In Hybrid Electric Truck with an Automatic Mechanical Transmission Based on Pontryagin's Minimum Principle. Sustainability, 2018, 10, 3758.	1.6	16
134	Co-Estimation of State of Charge and State of Health for Lithium-Ion Batteries Based on Fractional-Order Calculus. IEEE Transactions on Vehicular Technology, 2018, 67, 10319-10329.	3.9	394
135	Guest Editorial Special Section on Cyber-Physical Systems in Green Transportation. IEEE Transactions on Industrial Informatics, 2018, 14, 4124-4127.	7.2	2
136	The Modeling and Identification of Lithium-Ion Battery System. , 2018, , 99-140.		0
137			
	The Nonlinear Programming Optimal Control of a Hybrid Drive System., 2018, , 205-245.		O
138	The Nonlinear Programming Optimal Control of a Hybrid Drive System., 2018, , 205-245. An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles. Energy, 2018, 163, 837-848.	4.5	132
138	An artificial neural network-enhanced energy management strategy for plug-in hybrid electric	4.5	
	An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles. Energy, 2018, 163, 837-848.	4.5	132
139	An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles. Energy, 2018, 163, 837-848. Optimal Control and System Optimization of Ground Vehicle Hybrid Drive System., 2018, , 141-203. Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: A		132
139 140	An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles. Energy, 2018, 163, 837-848. Optimal Control and System Optimization of Ground Vehicle Hybrid Drive System., 2018, , 141-203. Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: A unified cost-optimal approach. Mechanical Systems and Signal Processing, 2017, 87, 4-16. Energy Management in Plug-in Hybrid Electric Vehicles: Recent Progress and a Connected Vehicles	4.4	132 0 158
139 140 141	An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles. Energy, 2018, 163, 837-848. Optimal Control and System Optimization of Ground Vehicle Hybrid Drive System., 2018, , 141-203. Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: A unified cost-optimal approach. Mechanical Systems and Signal Processing, 2017, 87, 4-16. Energy Management in Plug-in Hybrid Electric Vehicles: Recent Progress and a Connected Vehicles Perspective. IEEE Transactions on Vehicular Technology, 2017, 66, 4534-4549. Optimal Charging of Li-lon Batteries With Coupled Electro-Thermal-Aging Dynamics. IEEE Transactions	4.4 3.9	132 0 158 544

#	Article	IF	Citations
145	Electrothermal dynamics-conscious lithium-ion battery cell-level charging management via state-monitored predictive control. Energy, 2017, 141, 250-259.	4.5	142
146	Optimal battery sizing of smart home via convex programming. Energy, 2017, 140, 444-453.	4.5	93
147	Technological Developments in Batteries: A Survey of Principal Roles, Types, and Management Needs. IEEE Power and Energy Magazine, 2017, 15, 20-31.	1.6	417
148	\$H_{infty}\$-Based Nonlinear Observer Design for State of Charge Estimation of Lithium-Ion Battery With Polynomial Parameters. IEEE Transactions on Vehicular Technology, 2017, 66, 10853-10865.	3.9	61
149	Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle. Journal of Power Sources, 2017, 363, 277-283.	4.0	188
150	Trajectory Optimization-Based Auxiliary Power Unit Control Strategy for an Extended Range Electric Vehicle. IEEE Transactions on Vehicular Technology, 2017, 66, 10866-10874.	3.9	20
151	Charging optimization in lithium-ion batteries based on temperature rise and charge time. Applied Energy, 2017, 194, 569-577.	5.1	188
152	A novel simplified model for torsional vibration analysis of a series-parallel hybrid electric vehicle. Mechanical Systems and Signal Processing, 2017, 85, 329-338.	4.4	127
153	Nonlinear Fractional-Order Estimator with Guaranteed Robustness and Stability for Lithium-Ion Batteries. IEEE Transactions on Industrial Electronics, 2017, , 1-1.	5.2	76
154	Optimal Charging of Li-lon Batteries via a Single Particle Model with Electrolyte and Thermal Dynamics. Journal of the Electrochemical Society, 2017, 164, A1679-A1687.	1.3	85
155	Review of Modeling Techniques for Lithium-ion Traction Batteries in Electric Vehicles. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2017, 53, 20.	0.7	25
156	Modeling and Control Problems in Sustainable Transportation and Power Systems. Mathematical Problems in Engineering, 2016, 2016, 1-3.	0.6	4
157	Advanced Machine Learning Approach for Lithium-lon Battery State Estimation in Electric Vehicles. IEEE Transactions on Transportation Electrification, 2016, 2, 140-149.	5.3	261
158	Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array. Journal of Power Sources, 2016, 333, 203-212.	4.0	299
159	Real time energy management strategy for a fast charging electric urban bus powered by hybrid energy storage system. Energy, 2016, 112, 322-331.	4.5	85
160	Comparison of multi-mode hybrid powertrains with multiple planetary gears. Applied Energy, 2016, 178, 624-632.	5.1	78
161	Data pieces-based parameter identification for lithium-ion battery. Journal of Power Sources, 2016, 328, 174-184.	4.0	28
162	Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization. Energy, 2016, 111, 971-980.	4.5	141

#	Article	IF	Citations
163	Maximizing economy of plug-in hybrid electric vehicles. , 2016, , .		2
164	Effects of imbalanced currents on large-format LiFePO 4 $\!\!\!/$ graphite batteries systems connected in parallel. Journal of Power Sources, 2016, 313, 198-204.	4.0	74
165	Analysis of Thermal Aging Paths for Large-Format LiFePO4/Graphite Battery. Electrochimica Acta, 2016, 196, 13-23.	2.6	27
166	Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach. Applied Energy, 2016, 168, 683-690.	5.1	184
167	Large-scale deployment of electric taxis in Beijing: A real-world analysis. Energy, 2016, 100, 25-39.	4.5	95
168	Fractional-order modeling and State-of-Charge estimation for ultracapacitors. Journal of Power Sources, 2016, 314, 28-34.	4.0	119
169	Integrated Optimization of Battery Sizing, Charging, and Power Management in Plug-In Hybrid Electric Vehicles. IEEE Transactions on Control Systems Technology, 2016, 24, 1036-1043.	3.2	193
170	Battery Charge Control With an Electro-Thermal-Aging Coupling. , 2015, , .		23
171	Experimental Investigation of Ultracapacitor Impedance Characteristics. Energy Procedia, 2015, 75, 1888-1894.	1.8	7
172	Robust state-of-charge estimation of ultracapacitors for electric vehicles. , 2015, , .		7
173	Multi-objective optimal sizing and control of fuel cell systems for hybrid vehicle applications. , 2015, , .		7
174	Advanced Power-Source Integration in Hybrid Electric Vehicles: Multicriteria Optimization Approach. IEEE Transactions on Industrial Electronics, 2015, 62, 7847-7858.	5.2	152
175	Convex relaxations in the optimal control of electrified vehicles. , 2015, , .		40
176	A comparative study of equivalent circuit models of ultracapacitors for electric vehicles. Journal of Power Sources, 2015, 274, 899-906.	4.0	134
177	Dynamic Traffic Feedback Data Enabled Energy Management in Plug-in Hybrid Electric Vehicles. IEEE Transactions on Control Systems Technology, 2015, 23, 1075-1086.	3.2	239
178	Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles. IEEE Transactions on Control Systems Technology, 2015, 23, 1197-1204.	3.2	378
179	Experimental impedance investigation of an ultracapacitor at different conditions for electric vehicle applications. Journal of Power Sources, 2015, 287, 129-138.	4.0	64
180	Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian Predictive Modeling. IEEE Transactions on Industrial Electronics, 2015, , 1-1.	5.2	212

#	Article	IF	Citations
181	Integrating traffic velocity data into predictive energy management of plug-in hybrid electric vehicles. , 2015, , .		19
182	Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus. Applied Energy, 2015, 137, 913-924.	5.1	256
183	Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. Journal of Power Sources, 2015, 273, 793-803.	4.0	528
184	Optimal Dimensioning and Power Management of a Fuel Cell/Battery Hybrid Bus via Convex Programming. IEEE/ASME Transactions on Mechatronics, 2015, 20, 457-468.	3.7	256
185	Design and implementation of a real-time power management strategy for a parallel hybrid electric bus. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2014, 228, 1581-1598.	1.1	11
186	Comparison of Velocity Forecasting Strategies for Predictive Control in HEVs. , 2014, , .		13
187	An electrochemistry-based impedance model for lithium-ion batteries. Journal of Power Sources, 2014, 258, 9-18.	4.0	140
188	Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles. Energy, 2014, 64, 953-960.	4.5	151
189	Model-Based Dynamic Power Assessment of Lithium-Ion Batteries Considering Different Operating Conditions. IEEE Transactions on Industrial Informatics, 2014, 10, 1948-1959.	7.2	107
190	Comparison of Three Electrochemical Energy Buffers Applied to a Hybrid Bus Powertrain With Simultaneous Optimal Sizing and Energy Management. IEEE Transactions on Intelligent Transportation Systems, 2014, 15, 1193-1205.	4.7	218
191	Computationally efficient energy management of a planetary gear hybrid electric vehicle. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 4831-4836.	0.4	6
192	Modeling, Control, Optimization, and Analysis of Electrified Vehicle Systems. Advances in Mechanical Engineering, 2014, 6, 541412.	0.8	1
193	Comparison between two model-based algorithms for Li-ion battery SOC estimation in electric vehicles. Simulation Modelling Practice and Theory, 2013, 34, 1-11.	2.2	103
194	Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes. Applied Energy, 2013, 111, 1001-1009.	5.1	288
195	Modeling and control strategy development of a parallel hybrid electric bus. International Journal of Automotive Technology, 2013, 14, 971-985.	0.7	23
196	Charging time and loss optimization for LiNMC and LiFePO4 batteries based on equivalent circuit models. Journal of Power Sources, 2013, 239, 449-457.	4.0	127
197	Arrhenius Equation-Based Cell-Health Assessment: Application to Thermal Energy Management Design of a HEV NiMH Battery Pack. Energies, 2013, 6, 2709-2725.	1.6	42
198	Combined Optimal Sizing and Control for a Hybrid Tracked Vehicle. Energies, 2012, 5, 4697-4710.	1.6	58

#	Article	IF	CITATIONS
199	Optimal Sizing and Control Strategy Design for Heavy Hybrid Electric Truck. Mathematical Problems in Engineering, 2012, 2012, 1-15.	0.6	14
200	Optimal sizing and control strategy design for heavy hybrid electric truck. , 2012, , .		0
201	Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries. Journal of Power Sources, 2012, 217, 209-219.	4.0	163
202	A comparative study of equivalent circuit models for Li-ion batteries. Journal of Power Sources, 2012, 198, 359-367.	4.0	1,500
203	Online estimation of an electric vehicle Lithium-lon battery using recursive least squares with forgetting., 2011,,.		35
204	Recursive calibration for a lithium iron phosphate battery for electric vehicles using extended Kalman filtering. Journal of Zhejiang University: Science A, 2011, 12, 818-825.	1.3	31
205	Online model identification of lithium-ion battery for electric vehicles. Journal of Central South University, 2011, 18, 1525-1531.	1.2	41
206	Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy, 2011, 36, 3531-3540.	4.5	487
207	Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer. Energies, 2010, 3, 1586-1603.	1.6	221
208	Parameter identification of continuous - time Hammerstein system from step responses. , 2009, , .		1
209	Fuzzy Clustering Based Multi-model Support Vector Regression State of Charge Estimator for Lithium-ion Battery of Electric Vehicle. , 2009, , .		24
210	Parameter Design and Implementation of Propulsion System of a Plug-In Hybrid Electric Transit Bus. , 2009, , .		1
211	Predictive Energy Management for Dual Motor-Driven Electric Vehicles. , 0, , .		O