List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/372159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel biocompatible composite (Chitosan–zinc oxide nanoparticle): Preparation, characterization and dye adsorption properties. Colloids and Surfaces B: Biointerfaces, 2010, 80, 86-93.	2.5	247
2	Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(Îμ-caprolactone) electrospun nanofibers. Materials Science and Engineering C, 2016, 69, 1183-1191.	3.8	234
3	Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration. Materials Science and Engineering C, 2016, 58, 521-531.	3.8	160
4	Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: A review. Journal of Environmental Chemical Engineering, 2019, 7, 103283.	3.3	157
5	Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent—Silkworm pupa. Journal of Hazardous Materials, 2007, 139, 167-174.	6.5	151
6	Electrospun curcumin loaded poly(Îμ-caprolactone)/gum tragacanth nanofibers for biomedical application. International Journal of Biological Macromolecules, 2016, 84, 448-456.	3.6	147
7	Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Materials Science and Engineering C, 2019, 103, 109768.	3.8	141
8	Dye removal from colored textile wastewater using chitosan in binary systems. Desalination, 2011, 267, 64-72.	4.0	137
9	Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound dressing application: In vitro evaluation and antibacterial properties. Materials Science and Engineering C, 2013, 33, 4935-4943.	3.8	137
10	Dye adsorption and desorption properties of <i>Mentha pulegium</i> in single and binary systems. Journal of Applied Polymer Science, 2011, 122, 1489-1499.	1.3	126
11	Development of biodegradable electrospun gelatin/aloe-vera/poly(ε‑caprolactone) hybrid nanofibrous scaffold for application as skin substitutes. Materials Science and Engineering C, 2018, 93, 367-379.	3.8	107
12	Fabrication and characterization of PVA/Gum tragacanth/PCL hybrid nanofibrous scaffolds for skin substitutes. International Journal of Biological Macromolecules, 2017, 94, 679-690.	3.6	104
13	Preparation, characterization and dye adsorption properties of biocompatible composite (alginate/titania nanoparticle). Desalination, 2011, 275, 93-101.	4.0	102
14	Electrospinning of poly(vinyl alcohol)–water-soluble quaternized chitosan derivative blend. Carbohydrate Research, 2009, 344, 2496-2501.	1.1	100
15	Grafting of chitosan as a biopolymer onto wool fabric using anhydride bridge and its antibacterial property. Colloids and Surfaces B: Biointerfaces, 2010, 76, 397-403.	2.5	98
16	Environmentally friendly surface modification of silk fiber: Chitosan grafting and dyeing. Applied Surface Science, 2009, 255, 4171-4176.	3.1	97
17	Novel biosorbent (Canola hull): Surface characterization and dye removal ability at different cationic dye concentrations. Desalination, 2010, 264, 134-142.	4.0	97
18	Drug release and biodegradability of electrospun cellulose nanocrystal reinforced polycaprolactone. Materials Science and Engineering C, 2019, 94, 929-937.	3.8	94

#	Article	IF	CITATIONS
19	Interactions of gemini cationic surfactants with anionic azo dyes and their inhibited effects on dyeability of cotton fabric. Dyes and Pigments, 2007, 72, 331-338.	2.0	88
20	Solution polymerization of acrylonitrile with vinyl acids in dimethylformamide. Journal of Applied Polymer Science, 1996, 59, 1539-1550.	1.3	87
21	Radiation grafting of styrene onto polypropylene fibres by a 10MeV electron beam. Radiation Physics and Chemistry, 2007, 76, 787-793.	1.4	83
22	Development of nanofibrous scaffolds containing gum tragacanth/poly (Îμ-caprolactone) for application as skin scaffolds. Materials Science and Engineering C, 2015, 48, 71-79.	3.8	83
23	Thermal behavior of acrylonitrile carboxylic acid copolymers. Journal of Applied Polymer Science, 2003, 88, 685-698.	1.3	81
24	Facile synthesis of Fe 3 O 4 nanoparticles via aqueous based electro chemical route for heterogeneous electro-Fenton removal of azo dyes. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 91-105.	2.7	79
25	Multilayer nanofibrous patch comprising chamomile loaded carboxyethyl chitosan/poly(vinyl) Tj ETQq1 1 0.7843 Macromolecules, 2020, 147, 547-559.	14 rgBT /(3.6	Overlock 10 74
26	Synthesis, spectral properties and application of novel monoazo disperse dyes derived from N-ester-1,8-naphthalimide to polyester. Dyes and Pigments, 2008, 76, 684-689.	2.0	73
27	Adsorption of binary mixtures of cationic dyes. Dyes and Pigments, 2008, 76, 784-791.	2.0	71
28	Effect of Changing Solvents on Poly(-Caprolactone) Nanofibrous Webs Morphology. Journal of Nanomaterials, 2011, 2011, 1-10.	1.5	71
29	Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats. Materials Science and Engineering C, 2017, 78, 218-229.	3.8	71
30	Fabricating alginate/poly(caprolactone) nanofibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation. Carbohydrate Polymers, 2020, 233, 115873.	5.1	68
31	Gum tragacanth/poly(l -lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage. Carbohydrate Polymers, 2016, 140, 104-112.	5.1	63
32	Effect of coagulation conditions on properties of poly(acrylonitrile-carboxylic acid) fibers. Journal of Applied Polymer Science, 2003, 89, 1825-1837.	1.3	62
33	Investigation of morphological, mechanical and biological properties of cellulose nanocrystal reinforced electrospun gelatin nanofibers. International Journal of Biological Macromolecules, 2019, 124, 411-417.	3.6	60
34	Fabrication and characterization of PCL/gelatin/curcumin nanofibers and their antibacterial properties. Journal of Industrial Textiles, 2016, 46, 562-577.	1.1	54
35	Fabrication of curcumin-loaded gum tragacanth/poly(vinyl alcohol) nanofibers with optimized electrospinning parameters. Journal of Industrial Textiles, 2017, 46, 1170-1192.	1.1	52
36	Cinnamon extract loaded electrospun chitosan/gelatin membrane with antibacterial activity. International Journal of Biological Macromolecules, 2021, 173, 580-590.	3.6	52

#	Article	IF	CITATIONS
37	Tissue engineered poly(caprolactone)â€chitosanâ€poly(vinyl alcohol) nanofibrous scaffolds for burn and cutting wound healing. IET Nanobiotechnology, 2014, 8, 123-131.	1.9	45
38	Fabrication and characterization of chitosan-polycaprolactone core-shell nanofibers containing tetracycline hydrochloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128163.	2.3	43
39	Oxidation of dyes from colored wastewater using activated carbon/hydrogen peroxide. Desalination, 2011, 279, 183-189.	4.0	42
40	Fabrication of nano-structured electrospun collagen scaffold intended for nerve tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 1555-1567.	1.7	42
41	Photocatalytic discoloration of Acid Red 14 aqueous solution using titania nanoparticles immobilized on graphene oxide fabricated plate. Chemosphere, 2016, 159, 293-299.	4.2	39
42	Effect of novel blend nanofibrous scaffolds on diabetic wounds healing. IET Nanobiotechnology, 2016, 10, 1-7.	1.9	39
43	In vitro and in vivo studies of biaxially electrospun poly(caprolactone)/gelatin nanofibers, reinforced with cellulose nanocrystals, for wound healing applications. Cellulose, 2020, 27, 5179-5196.	2.4	39
44	Electrical stimulation of somatic human stem cells mediated by composite containing conductive nanofibers for ligament regeneration. Biologicals, 2017, 46, 99-107.	0.5	37
45	Decomposition and decoloration of a direct dye by electron beam radiation. Radiation Physics and Chemistry, 2010, 79, 33-35.	1.4	36
46	Comparative study of GO and reduced GO coated graphite electrodes for decolorization of acidic and basic dyes from aqueous solutions through heterogeneous electro-Fenton process. Journal of Environmental Chemical Engineering, 2017, 5, 2313-2324.	3.3	36
47	Preparation and characterization of electrospun polyethersulfone/polyvinylpyrrolidone-zeolite core–shell composite nanofibers for creatinine adsorption. Separation and Purification Technology, 2021, 257, 117881.	3.9	36
48	Modification of wool fabric using prepared chitosan-cyanuric chloride hybrid. Journal of the Textile Institute, 2015, 106, 80-89.	1.0	32
49	The effect of pH on the removal of anionic dyes from colored textile wastewater using a biosorbent. Journal of Applied Polymer Science, 2011, 120, 2996-3003.	1.3	31
50	Coaxial nanofibers from poly(caprolactone)/ poly(vinyl alcohol)/Thyme and their antibacterial properties. Journal of Industrial Textiles, 2018, 47, 834-852.	1.1	31
51	Electrospun PCL and PLA hybrid nanofibrous scaffolds containing <i>Nigella sativa</i> herbal extract for effective wound healing. Journal of Applied Polymer Science, 2020, 137, 49528.	1.3	30
52	Properties of polyacrylonitrileâ€ <i>N</i> â€(2â€hydroxy) propylâ€3â€ŧrimethylammonium chitosan chloride blend films and fibers. Journal of Applied Polymer Science, 2008, 109, 545-554.	1.3	26
53	PCL-based nanofibers loaded with ciprofloxacin/cyclodextrin containers. Journal of the Textile Institute, 2018, 109, 1044-1053.	1.0	26
54	Ecoâ€friendly grafting of natural biopolymer chitosan onto acylated wool fabrics using ultrasonic and study its properties. Journal of Applied Polymer Science, 2013, 129, 707-713.	1.3	25

#	Article	IF	CITATIONS
55	Fish Bone as a Low-Cost Adsorbent for Dye Removal from Wastewater: Response Surface Methodology and Classical Method. Environmental Modeling and Assessment, 2013, 18, 661-670.	1.2	25
56	Low-velocity impact performance of nanofiber-interlayered aramid/epoxy nanocomposites. Composites Part B: Engineering, 2019, 173, 106975.	5.9	25
57	The influence of graphene reinforced electrospun nano-interlayers on quasi-static indentation behavior of fiber-reinforced epoxy composites. Fibers and Polymers, 2017, 18, 322-333.	1.1	24
58	Fabrication of tungsten oxide nanofibers via electrospinning for gasochromic hydrogen detection. Sensors and Actuators B: Chemical, 2018, 268, 319-327.	4.0	24
59	Effects of porosity gradient of multilayered electrospun nanofibre mats on air filtration efficiency. Journal of the Textile Institute, 2017, 108, 1563-1571.	1.0	23
60	lsotherm, Kinetic, and Thermodynamic of Cationic Dye Removal from Binary System by Feldspar. Separation Science and Technology, 2012, 47, 1660-1672.	1.3	22
61	Biomimetic double-sided polypropylene mesh modified by DOPA and ofloxacin loaded carboxyethyl chitosan/polyvinyl alcohol-polycaprolactone nanofibers for potential hernia repair applications. International Journal of Biological Macromolecules, 2020, 165, 902-917.	3.6	22
62	Ultrasonic mediated production of carboxymethyl cellulose: Optimization of conditions using response surface methodology. Carbohydrate Polymers, 2015, 134, 278-284.	5.1	21
63	A new cellulose purification approach for higher degree of polymerization: Modeling, optimization and characterization. Carbohydrate Polymers, 2016, 152, 280-286.	5.1	20
64	Elimination of hazardous methylene blue from contaminated solutions by electrochemically magnetized graphene oxide as a recyclable adsorbent. Advanced Powder Technology, 2019, 30, 2352-2362.	2.0	20
65	Introduction of amine terminated dendritic structure to graphene oxide using Poly(propylene Imine) dendrimer to evaluate its organic contaminant removal. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 285-297.	2.7	18
66	Cellulose nanocrystal effect on crystallization kinetics and biological properties of electrospun polycaprolactone. Materials Science and Engineering C, 2021, 121, 111855.	3.8	18
67	Preparation of polyacrylonitrile and cellulose acetate blend fibers through wet-spinning. Journal of Applied Polymer Science, 2007, 103, 2000-2005.	1.3	17
68	Investigation on polyacrylonitrile/cellulose acetate blends. Macromolecular Research, 2007, 15, 605-609.	1.0	17
69	Decoloration and mineralization of reactive dyes using electron beam irradiation, Part I: Effect of the dye structure, concentration and absorbed dose (single, binary and ternary systems). Radiation Physics and Chemistry, 2012, 81, 851-856.	1.4	17
70	Preparation and Characterization of Chitosan/Feldspar Biohybrid as an Adsorbent: Optimization of Adsorption Process via Response Surface Modeling. Scientific World Journal, The, 2014, 2014, 1-13.	0.8	17
71	Modification of carbon nanotubes with cationic surfactant and its application for removal of direct dyes. Desalination and Water Treatment, 2014, 52, 4356-4368.	1.0	17
72	Synthesis and Characterization of Exopolysaccharide Encapsulated PCL/Gelatin Skin Substitute for Full-Thickness Wound Regeneration. Polymers, 2021, 13, 854.	2.0	17

#	Article	IF	CITATIONS
73	Fabrication of multifunctional mucoadhesive buccal patch for drug delivery applications. Journal of Biomedical Materials Research - Part A, 2021, 109, 2640-2656.	2.1	17
74	Antibacterial and biological properties of coconut oil loaded poly(Îμ-caprolactone)/gelatin electrospun membranes. Journal of Industrial Textiles, 2022, 51, 906S-930S.	1.1	16
75	Thermal and rheological behavior of acrylonitrile-carboxylic acid copolymers and their metal salt complexes. Journal of Applied Polymer Science, 1999, 74, 567-582.	1.3	15
76	Modeling and optimization of Photocatalytic Decolorization of binary dye solution using graphite electrode modified with Graphene oxide and TiO2. Journal of Environmental Health Science & Engineering, 2020, 18, 51-62.	1.4	15
77	Study on release of cardamom extract as an antibacterial agent from electrospun scaffold based on sodium alginate. Journal of the Textile Institute, 2021, 112, 1482-1490.	1.0	15
78	Halochromic Chemosensor From Poly(acrylonitrile)/Phenolphthalein Nanofibers as pH Sensor. IEEE Sensors Journal, 2016, 16, 873-880.	2.4	14
79	Quasi-static indentation response of aramid fiber/epoxy composites containing nylon 66 electrospun nano-interlayers. Journal of Industrial Textiles, 2018, 47, 960-977.	1.1	14
80	Functional hydrophilic highly biodegradable PCL nanofibers through direct aminolysis of PAMAM dendrimer. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 1069-1080.	1.8	14
81	Surfactantâ€modified feldspar: Isotherm, kinetic, and thermodynamic of binary system dye removal. Journal of Applied Polymer Science, 2012, 126, 340-349.	1.3	13
82	PCL-based nanofibers containing ibuprofen/cyclodextrins nanocontainers: A potential candidate for drug delivery application. Journal of Industrial Textiles, 2019, 48, 1420-1438.	1.1	13
83	The effect of electrospinning parameters on the morphology of glass nanofibers. Journal of the Textile Institute, 2020, 111, 941-949.	1.0	12
84	Removal of Disperse Blue 56 and Disperse Red 135 dyes from aqueous dispersions by modified montmorillonite nanoclay. Chemical Industry and Chemical Engineering Quarterly, 2017, 23, 21-29.	0.4	12
85	Feldspar/titanium dioxide/chitosan as a biophotocatalyst hybrid for the removal of organic dyes from aquatic phases. Journal of Applied Polymer Science, 2014, 131, .	1.3	11
86	Poly (É›â€caprolactone)–chitosan–poly (vinyl alcohol) nanofibrous scaffolds for skin excisional and burn wounds in a canine model. IET Nanobiotechnology, 2018, 12, 619-625.	1.9	11
87	Nanoâ€curcumin/graphene platelets loaded on sodium alginate/polyvinyl alcohol fibers as potential wound dressing. Journal of Applied Polymer Science, 2021, 138, 50884.	1.3	11
88	Optimal Aloe vera encapsulated PCL/Gel nanofiber design for skin substitute application and the evaluation of its in vivo implantation. Journal of Drug Delivery Science and Technology, 2022, 74, 103536.	1.4	11
89	Kinetics studies on copolymerization of acrylonitrile vinyl acids by solvent-water suspension polymerization. Journal of Applied Polymer Science, 2005, 97, 1284-1291.	1.3	10
90	Field Evaluation of Permethrin-treated Military Uniforms Against Anopheles stephensi and 4 species of Culex (Diptera:Culicidae) in Iran. Journal of Entomology, 2006, 3, 108-118.	0.2	10

#	Article	IF	CITATIONS
91	Synthesis and Characterization of Novel Monoazo Nâ€Esterâ€1,8â€Naphthalimide Disperse Dyestuffs. Journal of the Chinese Chemical Society, 2007, 54, 1021-1028.	0.8	9
92	Filtration performance of cigarette filter tip containing electrospun nanofibrous filter. Journal of Industrial Textiles, 2015, 45, 187-198.	1.1	9
93	Cellulose fabric with enhanced water absorbance and permeability using microwave radiation: modeling and optimization by RSM. Journal of the Textile Institute, 2019, 110, 117-123.	1.0	9
94	Coâ€electrospinning of lignocellulosic nanoparticles synthesized from walnut shells with poly(caprolactone) and gelatin for tissue engineering applications. Cellulose, 2021, 28, 4943-4957.	2.4	9
95	Modification of Nickel Ferrite with Cationic Surfactant: Dye Removal from Textile Wastewater Using Magnetic Separation. Journal of Environmental Engineering, ASCE, 2015, 141, .	0.7	8
96	Novel Blend Scaffolds from Poly(caprolactone)Chitosan-Poly(vinyl alcohol): Physical, Morphological and Biological Studies. Journal of Biomaterials and Tissue Engineering, 2014, 4, 245-252.	0.0	7
97	Synthesis and Characterization of Phenylalanine Nanotubes as Green pHâ€Responsive Drug Nanocarriers. ChemistrySelect, 2020, 5, 12570-12581.	0.7	7
98	A comparison between solvent casting and electrospinning methods for the fabrication of neem extract-containing buccal films. Journal of Industrial Textiles, 2022, 51, 311S-335S.	1.1	7
99	A novel electrochemical immunosensor for ultrasensitive detection of tumor necrosis factor α based on polystyrene - PAMAM dendritic polymer blend nanofibers. Microchemical Journal, 2022, 175, 107206.	2.3	7
100	Effect of comonomer on the viscoelastic behavior of co-poly (acrylonitrile) solutions. Journal of Polymer Research, 2016, 23, 1.	1.2	6
101	PVA nanofibers containing ofloxacin/α-cyclodextrin inclusion complexes: improve ofloxacin water solubility. Journal of the Textile Institute, 2020, 111, 669-681.	1.0	6
102	Graft Copolymerization of 2-Hydroxyethyl Methacrylate (HEMA) on Persian Silk Yarn. Research Journal of Textile and Apparel, 2005, 9, 1-11.	0.6	5
103	Electrical conductivity of vaporâ€grown carbon nanofiber/polyester textileâ€based composites. Journal of Applied Polymer Science, 2013, 130, 3009-3017.	1.3	5
104	Optimization, kinetics, equilibrium, and thermodynamic investigation of cationic dye adsorption on the fish bone. Desalination and Water Treatment, 2015, 53, 2249-2259.	1.0	5
105	<scp>Nanofibrous</scp> composite from <scp>polycaprolactoneâ€polyethylene glycolâ€aloe</scp> vera as a promising scaffold for bone repairing. Journal of Applied Polymer Science, 2022, 139, .	1.3	5
106	Magnetization of TiO2 nanofibrous spheres by one-step ultrasonic-assisted electrochemical technique. Journal of Molecular Liquids, 2018, 265, 251-259.	2.3	4
107	Novel platform based on polystyrene electrospun nanofibrous mats doped with PAMAM dendritic polymer for enhanced immunosensing. Applied Surface Science, 2022, 579, 152221.	3.1	3
108	The Effect of Bulk Electrospun Polycaprolactone-graphene Oxide Scaffold on the Healing of Defected Femur Cartilage on a Rabbit Model. Fibers and Polymers, 2021, 22, 1247-1255.	1.1	1

#	Article	IF	CITATIONS
109	Effect of glass nanofibers on mode I interlaminar fracture toughness of glass/epoxy composites. Journal of the Textile Institute, 2022, 113, 2714-2721.	1.0	1
110	OPTIMIZATION OF THE COMBINED UV/ELECTROCOAGULATION PROCESS FOR DYE REMOVAL FROM TEXTILE WASTEWATER USING RESPONSE SURFACE METHODOLOGY. Environmental Engineering and Management Journal, 2016, 15, 189-198.	0.2	0
111	OPTIMIZATION OF THE COMBINED UV/ELECTROCOAGULATION PROCESS FOR DYE REMOVAL FROM TEXTILE WASTEWATER USING RESPONSE SURFACE METHODOLOGY. Environmental Engineering and Management Journal, 2016, 15, 189-198.	0.2	0
112	Electrospinning of Poly(Caprolactone)/Gelatin/Clindamycin Nanocomposites as an Antibacterial Wound Dressing. Materials Science Forum, 0, 1063, 71-81.	0.3	0