
Alessandro Cescatti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3721523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vegetation-based climate mitigation in a warmer and greener World. Nature Communications, 2022, 13, 606.	5.8	51
2	The European forest carbon budget under future climate conditions and current management practices. Biogeosciences, 2022, 19, 3263-3284.	1.3	19
3	Emerging signals of declining forest resilience under climate change. Nature, 2022, 608, 534-539.	13.7	132
4	A unified vegetation index for quantifying the terrestrial biosphere. Science Advances, 2021, 7, .	4.7	160
5	Temperature thresholds of ecosystem respiration at a global scale. Nature Ecology and Evolution, 2021, 5, 487-494.	3.4	46
6	Emergent vulnerability to climate-driven disturbances in European forests. Nature Communications, 2021, 12, 1081.	5.8	139
7	Reply to Wernick, I. K. et al.; PalahÃ , M. et al Nature, 2021, 592, E18-E23.	13.7	16
8	Critical adjustment of land mitigation pathways for assessing countries' climate progress. Nature Climate Change, 2021, 11, 425-434.	8.1	61
9	Greening drylands despite warming consistent with carbon dioxide fertilization effect. Global Change Biology, 2021, 27, 3336-3349.	4.2	50
10	Revealing the widespread potential of forests to increase low level cloud cover. Nature Communications, 2021, 12, 4337.	5.8	45
11	Spatial homogeneity from temporal stability: Exploiting the combined hyper-frequent revisit of Terra and Aqua to guide Earth System Science. Remote Sensing of Environment, 2021, 261, 112496.	4.6	2
12	The three major axes of terrestrial ecosystem function. Nature, 2021, 598, 468-472.	13.7	99
13	Response to Comments on "Recent global decline of CO ₂ fertilization effects on vegetation photosynthesis― Science, 2021, 373, eabg7484.	6.0	15
14	Summer soil drying exacerbated by earlier spring greening of northern vegetation. Science Advances, 2020, 6, eaax0255.	4.7	258
15	Local biophysical effects of land use and land cover change: towards an assessment tool for policy makers. Land Use Policy, 2020, 91, 104382.	2.5	64
16	Forest production efficiency increases with growth temperature. Nature Communications, 2020, 11, 5322.	5.8	57
17	Recent global decline of CO ₂ fertilization effects on vegetation photosynthesis. Science, 2020, 370, 1295-1300.	6.0	317
18	Patterns and trends of the dominant environmental controls of net biome productivity. Biogeosciences, 2020, 17, 2365-2379.	1.3	12

#	Article	IF	CITATIONS
19	Increased control of vegetation on global terrestrial energy fluxes. Nature Climate Change, 2020, 10, 356-362.	8.1	152
20	Abrupt increase in harvested forest area over Europe after 2015. Nature, 2020, 583, 72-77.	13.7	198
21	An observation-constrained assessment of the climate sensitivity and future trajectories of wetland methane emissions. Science Advances, 2020, 6, eaay4444.	4.7	42
22	Wind amplifies the polar sea ice retreat. Environmental Research Letters, 2020, 15, 124022.	2.2	22
23	A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity. Earth System Science Data, 2020, 12, 1101-1116.	3.7	52
24	A spatially explicit database of wind disturbances in European forests over the periodÂ2000–2018. Earth System Science Data, 2020, 12, 257-276.	3.7	52
25	Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface model. Geoscientific Model Development, 2020, 13, 5401-5423.	1.3	23
26	Clouds damp the radiative impacts of polar sea ice loss. Cryosphere, 2020, 14, 2673-2686.	1.5	19
27	Biases in the albedo sensitivity to deforestation in CMIP5 models and their impacts on the associated historical radiative forcing. Earth System Dynamics, 2020, 11, 1209-1232.	2.7	4
28	Sensitivity of L-band vegetation optical depth to carbon stocks in tropical forests: a comparison to higher frequencies and optical indices. Remote Sensing of Environment, 2019, 232, 111303.	4.6	40
29	On the realistic contribution of European forests to reach climate objectives. Carbon Balance and Management, 2019, 14, 8.	1.4	18
30	Different response of surface temperature and air temperature to deforestation in climate models. Earth System Dynamics, 2019, 10, 473-484.	2.7	46
31	Satellite Observations of the Contrasting Response of Trees and Grasses to Variations in Water Availability. Geophysical Research Letters, 2019, 46, 1429-1440.	1.5	61
32	Urbanâ^'rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. Nature Ecology and Evolution, 2019, 3, 1076-1085.	3.4	98
33	Air temperature optima of vegetation productivity across global biomes. Nature Ecology and Evolution, 2019, 3, 772-779.	3.4	316
34	Increased Global Land Carbon Sink Due to Aerosolâ€Induced Cooling. Global Biogeochemical Cycles, 2019, 33, 439-457.	1.9	27
35	The sensitivity of the forest carbon budget shifts across processes along with stand development and climate change. Ecological Applications, 2019, 29, e01837.	1.8	39
36	The mark of vegetation change on Earth's surface energy balance. Nature Communications, 2018, 9, 679.	5.8	325

#	Article	IF	CITATIONS
37	A dataset mapping the potential biophysical effects of vegetation cover change. Scientific Data, 2018, 5, 180014.	2.4	41
38	Spatioâ€Temporal Convergence of Maximum Daily Lightâ€Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll. Geophysical Research Letters, 2018, 45, 3508-3519.	1.5	48
39	Evaluating the Interplay Between Biophysical Processes and Leaf Area Changes in Land Surface Models. Journal of Advances in Modeling Earth Systems, 2018, 10, 1102-1126.	1.3	22
40	Recent Changes in Global Photosynthesis and Terrestrial Ecosystem Respiration Constrained From Multiple Observations. Geophysical Research Letters, 2018, 45, 1058-1068.	1.5	19
41	Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nature Climate Change, 2018, 8, 914-920.	8.1	101
42	Quantifying the effect of forest age in annual net forest carbon balance. Environmental Research Letters, 2018, 13, 124018.	2.2	67
43	Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon Stocks in Managed Forests Under Warmer Climate. Journal of Advances in Modeling Earth Systems, 2018, 10, 2427-2452.	1.3	56
44	A temperature threshold to identify the driving climate forces of the respiratory process in terrestrial ecosystems. European Journal of Soil Biology, 2018, 89, 1-8.	1.4	5
45	Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones. Biogeosciences, 2018, 15, 1293-1318.	1.3	137
46	Geometry of the hemispherical radiometric footprint over plant canopies. Theoretical and Applied Climatology, 2018, 134, 981-990.	1.3	14
47	Response to Comment on "Satellites reveal contrasting responses of regional climate to the widespread greening of Earth― Science, 2018, 360, .	6.0	22
48	Ancillary vegetation measurements at ICOS ecosystem stations. International Agrophysics, 2018, 32, 645-664.	0.7	35
49	Biophysics and vegetation cover change: a process-based evaluation framework for confronting land surface models with satellite observations. Earth System Science Data, 2018, 10, 1265-1279.	3.7	46
50	Impacts of 2°C global warming on primary production and soil carbon storage capacity at pan-European level. Climate Services, 2017, 7, 64-77.	1.0	29
51	Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science, 2017, 356, 1180-1184.	6.0	266
52	Local temperature response to land cover and management change driven by non-radiativeÂprocesses. Nature Climate Change, 2017, 7, 296-302.	8.1	231
53	Increasing risk over time of weather-related hazards to the European population: a data-driven prognostic study. Lancet Planetary Health, The, 2017, 1, e200-e208.	5.1	192
54	Effect of climate warming on the annual terrestrial net ecosystem CO2 exchange globally in the boreal and temperate regions. Scientific Reports, 2017, 7, 3108.	1.6	18

#	Article	IF	CITATIONS
55	Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field. Agriculture, Ecosystems and Environment, 2017, 238, 168-178.	2.5	57
56	The European forest sector: past and future carbon budget and fluxes under different management scenarios. Biogeosciences, 2017, 14, 2387-2405.	1.3	38
57	Patterns and controls of inter-annual variability in theÂterrestrialÂcarbon budget. Biogeosciences, 2017, 14, 3815-3829.	1.3	27
58	Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences, 2016, 13, 4291-4313.	1.3	447
59	Global Surface Net-Radiation at 5 km from MODIS Terra. Remote Sensing, 2016, 8, 739.	1.8	33
60	Spatially downscaling sun-induced chlorophyll fluorescence leads to an improved temporal correlation with gross primary productivity. Remote Sensing of Environment, 2016, 182, 72-89.	4.6	109
61	Estimating daily forest carbon fluxes using a combination of ground and remotely sensed data. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 266-279.	1.3	26
62	Varying applicability of four different satellite-derived soil moisture products to global gridded crop model evaluation. International Journal of Applied Earth Observation and Geoinformation, 2016, 48, 51-60.	1.4	16
63	Biophysical climate impacts of recent changes in global forest cover. Science, 2016, 351, 600-604.	6.0	545
64	Belowground carbon allocation patterns as determined by the in-growth soil core 13C technique across different ecosystem types. Geoderma, 2016, 263, 140-150.	2.3	21
65	Optimal use of buffer volumes for the measurement of atmospheric gas concentration in multi-point systems. Atmospheric Measurement Techniques, 2016, 9, 4665-4672.	1.2	6
66	Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1941-1957.	1.3	65
67	Low historical nitrogen deposition effect on carbon sequestration in the boreal zone. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2542-2561.	1.3	29
68	Performance of Linear and Nonlinear Two-Leaf Light Use Efficiency Models at Different Temporal Scales. Remote Sensing, 2015, 7, 2238-2278.	1.8	23
69	Bayesian optimization of a light use efficiency model for the estimation of daily gross primary productivity in a range of Italian forest ecosystems. Ecological Modelling, 2015, 306, 57-66.	1.2	14
70	Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2788-2793.	3.3	265
71	Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC). Remote Sensing of Environment, 2015, 159, 203-221.	4.6	114
72	Exploiting the multi-angularity of the MODIS temporal signal to identify spatially homogeneous vegetation cover: A demonstration for agricultural monitoring applications. Remote Sensing of Environment, 2015, 166, 61-77.	4.6	25

#	Article	IF	CITATIONS
73	Components, drivers and temporal dynamics of ecosystem respiration in a Mediterranean pine forest. Soil Biology and Biochemistry, 2015, 88, 224-235.	4.2	58
74	The uncertain climate footprint of wetlands under human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4594-4599.	3.3	171
75	Improving the performance of remote sensing models for capturing intra- and inter-annual variations in daily GPP: An analysis using global FLUXNET tower data. Agricultural and Forest Meteorology, 2015, 214-215, 416-429.	1.9	48
76	Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests. Global Change Biology, 2015, 21, 363-376.	4.2	52
77	Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set. Biogeosciences, 2014, 11, 2185-2200.	1.3	62
78	Model–data fusion across ecosystems: from multisite optimizations to global simulations. Geoscientific Model Development, 2014, 7, 2581-2597.	1.3	43
79	Terrestrial gross primary production inferred from satellite fluorescence and vegetation models. Global Change Biology, 2014, 20, 3103-3121.	4.2	161
80	Reply to Magnani et al.: Linking large-scale chlorophyll fluorescence observations with cropland gross primary production. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2511.	3.3	11
81	Divergent apparent temperature sensitivity of terrestrial ecosystem respiration. Journal of Plant Ecology, 2014, 7, 419-428.	1.2	16
82	Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1327-33.	3.3	741
83	Vegetation-specific model parameters are not required for estimating gross primary production. Ecological Modelling, 2014, 292, 1-10.	1.2	37
84	Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 2014, 514, 213-217.	13.7	648
85	Methods and uncertainties in the experimental assessment of horizontal advection. Agricultural and Forest Meteorology, 2014, 198-199, 62-71.	1.9	12
86	Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agricultural and Forest Meteorology, 2014, 192-193, 108-120.	1.9	220
87	Spatial and temporal variations in ecosystem response to monsoon precipitation variability in southwestern North America. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1999-2017.	1.3	26
88	Components of forest soil CO2 efflux estimated from Δ14C values of soil organic matter. Plant and Soil, 2013, 364, 55-68.	1.8	10
89	Modeling burned area in Europe with the Community Land Model. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 265-279.	1.3	33
90	Satellite retrievals of leaf chlorophyll and photosynthetic capacity for improved modeling of GPP. Agricultural and Forest Meteorology, 2013, 177, 10-23.	1.9	117

#	Article	IF	CITATIONS
91	A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity. Agricultural and Forest Meteorology, 2013, 171-172, 137-152.	1.9	424
92	What does optimization theory actually predict about crown profiles of photosynthetic capacity when models incorporate greater realism?. Plant, Cell and Environment, 2013, 36, 1547-1563.	2.8	89
93	Modeling biomass burning and related carbon emissions during the 21st century in Europe. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1732-1747.	1.3	38
94	Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sensing of Environment, 2012, 121, 323-334.	4.6	259
95	Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytologist, 2012, 194, 775-783.	3.5	111
96	Biometric assessment of aboveground carbon pools and fluxes in three European forests by Randomized Branch Sampling. Forest Ecology and Management, 2012, 267, 172-181.	1.4	8
97	State-dependent errors in a land surface model across biomes inferred from eddy covariance observations on multiple timescales. Ecological Modelling, 2012, 246, 11-25.	1.2	18
98	Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature, 2012, 487, 472-476.	13.7	369
99	How do variations in the temporal distribution of rainfall events affect ecosystem fluxes in seasonally water-limited Northern Hemisphere shrublands and forests?. Biogeosciences, 2012, 9, 1007-1024.	1.3	38
100	On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model. Biogeosciences, 2012, 9, 2063-2083.	1.3	154
101	On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning. Biogeosciences, 2012, 9, 5243-5259.	1.3	45
102	Dual-chamber measurements of δ13C of soil-respired CO2 partitioned using a field-based three end-member model. Soil Biology and Biochemistry, 2012, 47, 106-115.	4.2	17
103	Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research, 2011, 116, .	3.3	933
104	Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of an alpine meadow. Agricultural and Forest Meteorology, 2011, 151, 1233-1243.	1.9	113
105	Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake. Agricultural and Forest Meteorology, 2011, 151, 1325-1337.	1.9	197
106	Controls on winter ecosystem respiration in temperate and boreal ecosystems. Biogeosciences, 2011, 8, 2009-2025.	1.3	42
107	Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy. Biogeosciences, 2011, 8, 3809-3821.	1.3	80
108	Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences, 2011, 8, 2209-2246.	1.3	166

#	Article	IF	CITATIONS
109	Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites. Global Change Biology, 2011, 17, 390-409.	4.2	128
110	Response to Comment on "Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level― Science, 2011, 331, 1265-1265.	6.0	9
111	Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 2010, 467, 951-954.	13.7	1,771
112	Clobal Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level. Science, 2010, 329, 838-840.	6.0	446
113	Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 2010, 329, 834-838.	6.0	2,056
114	INFOCARB: A regional scale forest carbon inventory (Provincia Autonoma di Trento, Southern Italian) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
115	High resolution field spectroscopy measurements for estimating gross ecosystem production in a rice field. Agricultural and Forest Meteorology, 2010, 150, 1283-1296.	1.9	116
116	Ecosystem carbon fluxes and canopy spectral reflectance of a mountain meadow. International Journal of Remote Sensing, 2009, 30, 435-449.	1.3	41
117	Biotic, Abiotic, and Management Controls on the Net Ecosystem CO2 Exchange of European Mountain Grassland Ecosystems. Ecosystems, 2008, 11, 1338-1351.	1.6	122
118	Carbon accumulation in European forests. Nature Geoscience, 2008, 1, 425-429.	5.4	263
119	Spatial variability and optimal sampling strategy of soil respiration. Forest Ecology and Management, 2008, 255, 106-112.	1.4	77
120	Indirect estimates of canopy gap fraction based on the linear conversion of hemispherical photographs. Agricultural and Forest Meteorology, 2007, 143, 1-12.	1.9	72
121	Canopy spectral invariants for remote sensing and model applications. Remote Sensing of Environment, 2007, 106, 106-122.	4.6	129
122	Major diffusion leaks of clampâ€on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar <i>et al</i> . model parameters?. Plant, Cell and Environment, 2007, 30, 1006-1022.	2.8	119
123	Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agriculture, Ecosystems and Environment, 2007, 121, 93-120.	2.5	305
124	Sizeâ€Dependent Variation in Shoot Lightâ€Harvesting Efficiency in Shadeâ€Intolerant Conifers. International Journal of Plant Sciences, 2006, 167, 19-32.	0.6	20
125	Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant, Cell and Environment, 2006, 29, 1159-1178.	2.8	151
126	Indirect partitioning of soil respiration in a series of evergreen forest ecosystems. Plant and Soil, 2006, 284, 7-22.	1.8	49

#	Article	IF	CITATIONS
127	Buoyancy and The Sensible Heat Flux Budget Within Dense Canopies. Boundary-Layer Meteorology, 2006, 118, 217-240.	1.2	61
128	Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant, Cell and Environment, 2005, 28, 1552-1566.	2.8	245
129	Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Global Change Biology, 2005, 11, 1024-1041.	4.2	172
130	Pan-European delta13C values of air and organic matter from forest ecosystems. Global Change Biology, 2005, 11, 1065-1093.	4.2	60
131	Light capture efficiency decreases with increasing tree age and size in the southern hemisphere gymnosperm Agathis australis. Trees - Structure and Function, 2005, 19, 177-190.	0.9	46
132	Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theoretical and Applied Climatology, 2005, 80, 121-141.	1.3	173
133	Comparing CO2 Storage and Advection Conditions at Night at Different Carboeuroflux Sites. Boundary-Layer Meteorology, 2005, 116, 63-93.	1.2	160
134	Importance of advection in the atmospheric CO2 exchanges of an alpine forest. Agricultural and Forest Meteorology, 2005, 130, 193-206.	1.9	85
135	Experimental analysis of flux footprint for varying stability conditions in an alpine meadow. Agricultural and Forest Meteorology, 2005, 135, 291-301.	1.9	36
136	Leaf to Landscape. Ecological Studies, 2004, , 42-85.	0.4	76
137	Drag coefficient and turbulence intensity in conifer canopies. Agricultural and Forest Meteorology, 2004, 121, 197-206.	1.9	62
138	Canopy Architecture and Turbulence Structure in a Coniferous Forest. Boundary-Layer Meteorology, 2003, 108, 39-59.	1.2	75
139	Footprints and Fetches for Fluxes over Forest Canopies with Varying Structure and Density. Boundary-Layer Meteorology, 2003, 106, 437-459.	1.2	80
140	Structural acclimation and radiation regime of silver fir (Abies alba Mill.) shoots along a light gradient. Plant, Cell and Environment, 2003, 26, 429-442.	2.8	67
141	Early response of Pinus sylvestris and Picea abies seedlings to an experimental canopy gap in a boreal spruce forest. Forest Ecology and Management, 2003, 176, 321-336.	1.4	63
142	Modification of light-acclimation of Pinus sylvestris shoot architecture by site fertility. Agricultural and Forest Meteorology, 2002, 111, 121-140.	1.9	30
143	Estimation of leaf area index in open-canopy ponderosa pine forests at different successional stages and management regimes in Oregon. Agricultural and Forest Meteorology, 2001, 108, 1-14.	1.9	138
144	Silvicultural alternatives, competition regime and sensitivity to climate in a European beech forest. Forest Ecology and Management, 1998, 102, 213-223.	1.4	77

#	Article	IF	CITATIONS
145	Effects of needle clumping in shoots and crowns on the radiative regime of a Norway spruce canopy. Annales Des Sciences Forestières, 1998, 55, 89-102.	1.1	42
146	A quantitative analysis of the interactions between climatic response and intraspecific competition in European beech. Canadian Journal of Forest Research, 1997, 27, 277-284.	0.8	112
147	Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. I. Model structure and algorithms. Ecological Modelling, 1997, 101, 263-274.	1.2	181
148	Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. II. Model testing and application in a Norway spruce stand. Ecological Modelling, 1997, 101, 275-284.	1.2	59
149	Climate, soils and Cephalcia arvensis outbreaks on Picea abies in the Italian Alps. Forest Ecology and Management, 1994, 68, 375-384.	1.4	18
150	Temperature-Dependent Growth Model for Eggs and Larvae of Cephalcia arvensis (Hymenoptera:) Tj ETQq0 0 0 r	rgBT /Over	rlock 10 Tf 50

151	Distribution and ecology ofLymantria monacha L. andCephalcia spp. in non-outbreak areas of Trentino (N-Italy). Anzeiger Für SchÃ d lingskunde, Pflanzenschutz, Umweltschutz, 1992, 65, 92-99.	0.	.1	7	
-----	---	----	----	---	--