
Patrick Trieu-Cuot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3721368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Molecular Microbiology, 2002, 45, 1499-1513.	2.5	439
2	Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3'5''-aminoglycoside phosphotransferase type III. Gene, 1983, 23, 331-341.	2.2	406
3	Identification of Streptococci to Species Level by Sequencing the Gene Encoding the Manganese-Dependent Superoxide Dismutase. Journal of Clinical Microbiology, 1998, 36, 41-47.	3.9	283
4	Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens. Nature, 2009, 458, 83-86.	27.8	273
5	Rapid and Accurate Species-Level Identification of Coagulase-Negative Staphylococci by Using the sodA Gene as a Target. Journal of Clinical Microbiology, 2001, 39, 4296-4301.	3.9	267
6	Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Molecular Microbiology, 2002, 43, 1-14.	2.5	258
7	Multiplex PCR Assay for Rapid and Accurate Capsular Typing of Group B Streptococci. Journal of Clinical Microbiology, 2007, 45, 1985-1988.	3.9	241
8	Accuracy of Phenotypic and Genotypic Testing for Identification of Streptococcus pneumoniae and Description of Streptococcus pseudopneumoniae sp. nov. Journal of Clinical Microbiology, 2004, 42, 4686-4696.	3.9	240
9	The surface protein HvgA mediates group B streptococcus hypervirulence and meningeal tropism in neonates. Journal of Experimental Medicine, 2010, 207, 2313-2322.	8.5	240
10	Shuttle vectors containing a multiple cloning site and a lacZα gene for conjugal transfer of DNA from Escherichia coli to Gram-positive bacteria. Gene, 1991, 102, 99-104.	2.2	210
11	Assembly and role of pili in group B streptococci. Molecular Microbiology, 2006, 60, 1401-1413.	2.5	209
12	Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline. Nature Communications, 2014, 5, 4544.	12.8	208
13	Dual Role for Pilus in Adherence to Epithelial Cells and Biofilm Formation in Streptococcus agalactiae. PLoS Pathogens, 2009, 5, e1000422.	4.7	199
14	Genomic diversity and evolution within the species Streptococcus agalactiae. Microbes and Infection, 2006, 8, 1227-1243.	1.9	188
15	Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. Research in Microbiology, 2005, 156, 289-297.	2.1	186
16	CovS/CovR of group B streptococcus: a two-component global regulatory system involved in virulence. Molecular Microbiology, 2004, 54, 1250-1268.	2.5	185
17	Nucleotide sequence of thetetMtetracycline resistance determinant of the streptococcal conjugative shuttle transposon Tn1545. Nucleic Acids Research, 1986, 14, 7047-7058.	14.5	159
18	Nucleotide sequence of the erythromycin resistance gene of the conjugative transposon Tn1545. Nucleic Acids Research, 1990, 18, 3660-3660.	14.5	159

#	Article	IF	CITATIONS
19	A pair of mobilizable shuttle vectors conferring resistance to spectinomycin for molecular cloning inEscherichia coliand in Gram-positive bacteria. Nucleic Acids Research, 1990, 18, 4296-4296.	14.5	149
20	Sequencing the Gene Encoding Manganese-Dependent Superoxide Dismutase for Rapid Species Identification of Enterococci. Journal of Clinical Microbiology, 2000, 38, 415-418.	3.9	149
21	Cell Surface of Lactococcus lactis Is Covered by a Protective Polysaccharide Pellicle. Journal of Biological Chemistry, 2010, 285, 10464-10471.	3.4	148
22	Circularization of Tn916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Molecular Microbiology, 2002, 28, 103-117.	2.5	143
23	Taxonomic dissection of the Streptococcus bovis group by analysis of manganese-dependent superoxide dismutase gene (sodA) sequences: reclassification of 'Streptococcus infantarius subsp. coli' as Streptococcus lutetiensis sp. nov. and of Streptococcus bovis biotype 11.2 as Streptococcus pasteurianus sp. nov International Journal of Systematic and Evolutionary Microbiology, 2002, 52,	1.7	136
24	Contribution of Mn-Cofactored Superoxide Dismutase (SodA) to the Virulence of Streptococcus agalactiae. Infection and Immunity, 2001, 69, 5098-5106.	2.2	132
25	Shaping a bacterial genome by large chromosomal replacements, the evolutionary history of <i>Streptococcus agalactiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15961-15966.	7.1	131
26	Attenuated virulence of <i>Streptococcus agalactiae</i> deficient in <scp>D</scp> â€alanylâ€lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Molecular Microbiology, 2003, 49, 1615-1625.	2.5	127
27	Activation of the NLRP3 Inflammasome by Group B Streptococci. Journal of Immunology, 2012, 188, 1953-1960.	0.8	127
28	Lipoproteins Are Critical TLR2 Activating Toxins in Group B Streptococcal Sepsis. Journal of Immunology, 2008, 180, 6149-6158.	0.8	126
29	D-Alanylation of Lipoteichoic Acids Confers Resistance to Cationic Peptides in Group B Streptococcus by Increasing the Cell Wall Density. PLoS Pathogens, 2012, 8, e1002891.	4.7	126
30	Role of Lipoteichoic Acid in the Phagocyte Response to Group B <i>Streptococcus</i> . Journal of Immunology, 2005, 174, 6449-6455.	0.8	125
31	Mechanism of action of spiramycin and other macrolides. Journal of Antimicrobial Chemotherapy, 1988, 22, 13-23.	3.0	122
32	<i>Streptococcus agalactiae</i> GAPDH Is a Virulence-Associated Immunomodulatory Protein. Journal of Immunology, 2007, 178, 1379-1387.	0.8	120
33	Genome Sequence of <i>Streptococcus gallolyticus</i> : Insights into Its Adaptation to the Bovine Rumen and Its Ability To Cause Endocarditis. Journal of Bacteriology, 2010, 192, 2266-2276.	2.2	120
34	TLR-Independent Type I Interferon Induction in Response to an Extracellular Bacterial PathogenÂvia Intracellular Recognition of Its DNA. Cell Host and Microbe, 2008, 4, 543-554.	11.0	118
35	Capsular Switching in Group B Streptococcus CC17 Hypervirulent Clone: A Future Challenge for Polysaccharide Vaccine Development. Journal of Infectious Diseases, 2012, 206, 1745-1752.	4.0	117
36	Rapid detection of the "highly virulent―group B streptococcus ST-17 clone. Microbes and Infection, 2006, 8, 1714-1722.	1.9	113

#	Article	IF	CITATIONS
37	An integrative vector exploiting the transposition properties of Tn1545 for insertional mutagenesis and cloning of genes from Gram-positive bacteria. Gene, 1991, 106, 21-27.	2.2	111
38	Invasive group A streptococcal infections in adults, France (2006–2010). Clinical Microbiology and Infection, 2012, 18, 702-710.	6.0	111
39	Group B Streptococcus Degrades Cyclic-di-AMP to Modulate STING-Dependent Type I Interferon Production. Cell Host and Microbe, 2016, 20, 49-59.	11.0	110
40	The SrtA Sortase of Streptococcus agalactiae Is Required for Cell Wall Anchoring of Proteins Containing the LPXTG Motif, for Adhesion to Epithelial Cells, and for Colonization of the Mouse Intestine. Infection and Immunity, 2005, 73, 3342-3350.	2.2	107
41	Invasive Group B Streptococcal Infections in Infants, France. Emerging Infectious Diseases, 2008, 14, 1647-1649.	4.3	107
42	A broad-host-range mobilizable shuttle vector for the construction of transcriptional fusions to β-galactosidase in Gram-positive bacteria. FEMS Microbiology Letters, 2006, 156, 193-198.	1.8	106
43	Identification of New Genes Involved in the Virulence of Listeria monocytogenes by Signature-Tagged Transposon Mutagenesis. Infection and Immunity, 2001, 69, 2054-2065.	2.2	105
44	Colorectal cancer specific conditions promote <i>Streptococcus gallolyticus</i> gut colonization. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E283-E291.	7.1	101
45	Respiration metabolism of Group B Streptococcus is activated by environmental haem and quinone and contributes to virulence. Molecular Microbiology, 2005, 56, 525-534.	2.5	99
46	Regulation of d -Alanyl-Lipoteichoic Acid Biosynthesis in Streptococcus agalactiae Involves a Novel Two-Component Regulatory System. Journal of Bacteriology, 2001, 183, 6324-6334.	2.2	89
47	Genetic Basis of Antibiotic Resistance in Streptococcus agalactiae Strains Isolated in a French Hospital. Antimicrobial Agents and Chemotherapy, 2003, 47, 794-797.	3.2	89
48	Molecular Dissection of the <i>secA2</i> Locus of Group B Streptococcus Reveals that Glycosylation of the Srr1 LPXTG Protein Is Required for Full Virulence. Journal of Bacteriology, 2009, 191, 4195-4206.	2.2	86
49	Epidemiology of Invasive Streptococcus pyogenes Infections in France in 2007. Journal of Clinical Microbiology, 2011, 49, 4094-4100.	3.9	86
50	Adult zebrafish model of bacterial meningitis in Streptococcus agalactiae infection. Developmental and Comparative Immunology, 2012, 38, 447-455.	2.3	80
51	Molecular Characterization of a Streptococcus gallolyticus Genomic Island Encoding a Pilus Involved in Endocarditis. Journal of Infectious Diseases, 2011, 204, 1960-1970.	4.0	78
52	Optimization of green fluorescent protein expression vectors for in vitro and in vivo detection of Listeria monocytogenes. Research in Microbiology, 2000, 151, 353-360.	2.1	77
53	Group B Streptococcus GAPDH Is Released upon Cell Lysis, Associates with Bacterial Surface, and Induces Apoptosis in Murine Macrophages. PLoS ONE, 2012, 7, e29963.	2.5	75
54	A Novel Extended-Spectrum TEM-Type β-Lactamase (TEM-52) Associated with Decreased Susceptibility to Moxalactam in <i>Klebsiella pneumoniae</i> . Antimicrobial Agents and Chemotherapy, 1998, 42, 108-113.	3.2	73

#	Article	IF	CITATIONS
55	Invasive group B streptococcal infections in adults, France (2007–2010). Clinical Microbiology and Infection, 2011, 17, 1587-1589.	6.0	65
56	Cyclic di-AMP regulation of osmotic homeostasis is essential in Group B Streptococcus. PLoS Genetics, 2018, 14, e1007342.	3.5	63
57	RNA and β-Hemolysin of Group B Streptococcus Induce Interleukin-1β (IL-1β) by Activating NLRP3 Inflammasomes in Mouse Macrophages. Journal of Biological Chemistry, 2014, 289, 13701-13705.	3.4	62
58	Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci. Nature Communications, 2015, 6, 7193.	12.8	60
59	TLR2-Induced IL-10 Production Impairs Neutrophil Recruitment to Infected Tissues during Neonatal Bacterial Sepsis. Journal of Immunology, 2013, 191, 4759-4768.	0.8	59
60	<scp>S</scp> rr2, a multifaceted adhesin expressed by <scp>ST</scp> â€17 hypervirulent <scp>G</scp> roup <scp>B <i>S</i></scp> <i>treptococcus</i> involved in binding to both fibrinogen and plasminogen. Molecular Microbiology, 2015, 97, 1209-1222.	2.5	59
61	Characterization of Superoxide dismutase genes from Gram-positive bacteria by polymerase chain reaction using degenerate primers. FEMS Microbiology Letters, 1995, 131, 41-45.	1.8	58
62	The Group BStreptococcusNADH oxidase Noxâ $\in 2$ is involved in fatty acid biosynthesis during aerobic growth and contributes to virulence. Molecular Microbiology, 2006, 62, 772-785.	2.5	58
63	Single nucleotide resolution RNA-seq uncovers new regulatory mechanisms in the opportunistic pathogen Streptococcus agalactiae. BMC Genomics, 2015, 16, 419.	2.8	53
64	Role of the Group B Antigen of Streptococcus agalactiae: A Peptidoglycan-Anchored Polysaccharide Involved in Cell Wall Biogenesis. PLoS Pathogens, 2012, 8, e1002756.	4.7	52
65	Effect of PhoP-PhoQ Activation by Broad Repertoire of Antimicrobial Peptides on Bacterial Resistance. Journal of Biological Chemistry, 2012, 287, 4544-4551.	3.4	52
66	FbsC, a Novel Fibrinogen-binding Protein, Promotes Streptococcus agalactiae-Host Cell Interactions. Journal of Biological Chemistry, 2014, 289, 21003-21015.	3.4	52
67	Group B Streptococcus surface proteins as major determinants for meningeal tropism. Current Opinion in Microbiology, 2012, 15, 44-49.	5.1	49
68	Environmental fatty acids enable emergence of infectious Staphylococcus aureus resistant to FASII-targeted antimicrobials. Nature Communications, 2016, 7, 12944.	12.8	49
69	A mouse model reproducing the pathophysiology of neonatal groupÂB streptococcal infection. Nature Communications, 2018, 9, 3138.	12.8	49
70	Nucleotide sequence of the transposable element IS15. Gene, 1984, 30, 113-120.	2.2	47
71	Enhanced conjugative transfer of plasmid DNA fromEscherichia colitoStaphylococcus aureusandListeria monocytogenes. FEMS Microbiology Letters, 1993, 109, 19-23.	1.8	47
72	Rapid and Accurate Identification of Human Isolates of Pasteurella and Related Species by Sequencing the sodA Gene. Journal of Clinical Microbiology, 2005, 43, 2307-2314.	3.9	47

#	Article	IF	CITATIONS
73	The Abi-domain Protein Abx1 Interacts with the CovS Histidine Kinase to Control Virulence Gene Expression in Group B Streptococcus. PLoS Pathogens, 2013, 9, e1003179.	4.7	47
74	<i>Streptococcus gallolyticus</i> Pil3 Pilus Is Required for Adhesion to Colonic Mucus and for Colonization of Mouse Distal Colon. Journal of Infectious Diseases, 2015, 212, 1646-1655.	4.0	47
75	Evolution and transfer of aminoglycoside resistance genes under natural conditions. Journal of Antimicrobial Chemotherapy, 1986, 18, 93-102.	3.0	46
76	Native Valve Endocarditis Due to Enterococcus hirae. Journal of Clinical Microbiology, 2002, 40, 2689-2690.	3.9	46
77	Characterization of Superoxide dismutase genes from Gram-positive bacteria by polymerase chain reaction using degenerate primers. FEMS Microbiology Letters, 1995, 131, 41-45.	1.8	46
78	Atypical association of DDE transposition with conjugation specifies a new family of mobile elements. Molecular Microbiology, 2009, 71, 948-959.	2.5	45
79	Cyclic di-AMP in host–pathogen interactions. Current Opinion in Microbiology, 2018, 41, 21-28.	5.1	44
80	The 2-Cys Peroxiredoxin Alkyl Hydroperoxide Reductase C Binds Heme and Participates in Its Intracellular Availability in Streptococcus agalactiae. Journal of Biological Chemistry, 2010, 285, 16032-16041.	3.4	43
81	Brinster et al. reply. Nature, 2010, 463, E4-E4.	27.8	42
82	Characterization of the Tn 916 -like Transposon Tn 3872 in a Strain of Abiotrophia defectiva () Tj ETQq0 0 0 rgBT Agents and Chemotherapy, 2000, 44, 790-793.	- /Overlock 3.2	2 10 Tf 50 382 41
83	The Putative Glycosyltransferase-Encoding Gene cylJ and the Group B Streptococcus (GBS)-Specific Gene cylK Modulate Hemolysin Production and Virulence of GBS. Infection and Immunity, 2007, 75, 2063-2066.	2.2	40
84	Inhibition of IL-10 Production by Maternal Antibodies against Group B Streptococcus GAPDH Confers Immunity to Offspring by Favoring Neutrophil Recruitment. PLoS Pathogens, 2011, 7, e1002363.	4.7	40
85	Risk Factors for Infant Colonization by Hypervirulent CC17 Group B Streptococcus: Toward the Understanding of Late-onset Disease. Clinical Infectious Diseases, 2019, 69, 1740-1748.	5.8	40
86	Interaction with human plasminogen system turns on proteolytic activity in Streptococcus agalactiae and enhances its virulence in a mouse model. Microbes and Infection, 2007, 9, 1276-1284.	1.9	39
87	DNA sequences specifying the transcription of the streptococcal kanamycin resistance gene in Escherichia coli and Bacillus subtilis. Molecular Genetics and Genomics, 1985, 198, 348-352.	2.4	38
88	Changing Epidemiology of Group B Streptococcus Susceptibility to Fluoroquinolones and Aminoglycosides in France. Antimicrobial Agents and Chemotherapy, 2016, 60, 7424-7430.	3.2	38
89	An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains. Nucleic Acids Research, 2012, 40, 2846-2861.	14.5	37
90	Transposition behavior of IS15 and its progenitor IS15-î": Are cointegrates exclusive end products?. Plasmid, 1985, 14, 80-89.	1.4	35

#	Article	IF	CITATIONS
91	Role of the Streptococcus agalactiae ClpP serine protease in heat-induced stress defence and growth arrest. Microbiology (United Kingdom), 2003, 149, 407-417.	1.8	34
92	Extracellular Nucleotide Catabolism by the Group B Streptococcus Ectonucleotidase NudP Increases Bacterial Survival in Blood. Journal of Biological Chemistry, 2014, 289, 5479-5489.	3.4	34
93	Genetic Basis of Antibiotic Resistance in Clinical Isolates of Streptococcus gallolyticus () Tj ETQq1 1 0.784314 rg	BT ₃ Overlo	pck_{33} 10 Tf 50 (
94	Heterogeneric conjugal transfer of the pheromone-responsive plasmid pIP964 (IncHlyI) ofEnterococcus faecalisin the apparent absence of pheromone induction. FEMS Microbiology Letters, 1994, 122, 173-179.	1.8	32
95	Molecular characterization and expression analysis of the superoxide dismutase gene from Streptococcus agalactiae. Gene, 1997, 204, 213-218.	2.2	31
96	Capsular polysaccharide of Group B Streptococcus mediates biofilm formation in the presence of human plasma. Microbes and Infection, 2015, 17, 71-76.	1.9	30
97	Meningitis Due to Streptococcus salivarius. Journal of Clinical Microbiology, 2001, 39, 3017-3017.	3.9	29
98	Single Cell Stochastic Regulation of Pilus Phase Variation by an Attenuation-like Mechanism. PLoS Pathogens, 2014, 10, e1003860.	4.7	29
99	Nucleotide sequence of the kanamycin resistance determinant of the pneumococcal transposon Tn1545: Evolutionary relationships and transcriptional analysis of aphA-3 genes. Molecular Genetics and Genomics, 1987, 207, 509-513.	2.4	28
100	Group B Streptococcus Hijacks the Host Plasminogen System to Promote Brain Endothelial Cell Invasion. PLoS ONE, 2013, 8, e63244.	2.5	28
101	The <i>Streptococcus agalactiae </i> cell wallâ€anchored protein PbsP mediates adhesion to and invasion of epithelial cells by exploiting the host vitronectin/α _v integrin axis. Molecular Microbiology, 2018, 110, 82-94.	2.5	28
102	Nucleotide sequence of the chloramphenicol resistance determinant of the streptococcal plasmid pIP501. Plasmid, 1992, 28, 272-276.	1.4	27
103	PbsP, a cell wallâ€anchored protein that binds plasminogen to promote hematogenous dissemination of group B <i>Streptococcus</i> . Molecular Microbiology, 2016, 101, 27-41.	2.5	27
104	The Pil3 pilus of <i>Streptococcus gallolyticus</i> binds to intestinal mucins and to fibrinogen. Gut Microbes, 2016, 7, 526-532.	9.8	27
105	Molecular Characterization of Nonhemolytic and Nonpigmented Group B Streptococci Responsible for Human Invasive Infections. Journal of Clinical Microbiology, 2016, 54, 75-82.	3.9	27
106	The plasminogen binding protein PbsP is required for brain invasion by hypervirulent CC17 Group B streptococci. Scientific Reports, 2018, 8, 14322.	3.3	26
107	O-Glycosylation of the N-terminal Region of the Serine-rich Adhesin Srr1 of Streptococcus agalactiae Explored by Mass Spectrometry. Molecular and Cellular Proteomics, 2014, 13, 2168-2182.	3.8	24
108	Use of an excision reporter plasmid to study the intracellular mobility of the conjugative transposon Tn916 in Gram-positive bacteria. Microbiology (United Kingdom), 1997, 143, 1253-1261.	1.8	23

#	Article	IF	CITATIONS
109	Roles of Environmental Heme, and Menaquinone, in Streptococcus Agalactiae. BioMetals, 2006, 19, 205-210.	4.1	23
110	The GBS PI-2a Pilus Is Required for Virulence in Mice Neonates. PLoS ONE, 2011, 6, e18747.	2.5	22
111	Epidemiologically and clinically relevant Group B Streptococcus isolates do not bind collagen but display enhanced binding to human fibrinogen. Microbes and Infection, 2012, 14, 1044-1048.	1.9	21
112	Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae. Nanoscale, 2014, 6, 14820-14827.	5.6	21
113	Construction of isogenic mutants in Streptococcus gallolyticus based on the development of new mobilizable vectors. Research in Microbiology, 2013, 164, 973-978.	2.1	20
114	Streptococci Engage TLR13 on Myeloid Cells in a Site-Specific Fashion. Journal of Immunology, 2016, 196, 2733-2741.	0.8	20
115	Regulation of PI-2b Pilus Expression in Hypervirulent Streptococcus agalactiae ST-17 BM110. PLoS ONE, 2017, 12, e0169840.	2.5	20
116	Genetics of Streptococci, Lactococci, and Enterococci: Review of the Sixth International Conference. Journal of Bacteriology, 2002, 184, 6085-6092.	2.2	19
117	Structural and Functional Characterization of IS 1358 from Vibrio cholerae. Journal of Bacteriology, 1998, 180, 6101-6106.	2.2	19
118	Fluoroquinolone-Resistant Group B Streptococci in Acute Exacerbation of Chronic Bronchitis. Emerging Infectious Diseases, 2008, 14, 349-350.	4.3	18
119	Comparison of the Diversilab® system with multi-locus sequence typing and pulsed-field gel electrophoresis for the characterization of Streptococcus agalactiae invasive strains. Journal of Microbiological Methods, 2011, 85, 137-142.	1.6	17
120	Analysis of the Streptococcus agalactiae exoproteome. Journal of Proteomics, 2013, 89, 154-164.	2.4	17
121	SecA Localization and SecA-Dependent Secretion Occurs at New Division Septa in Group B Streptococcus. PLoS ONE, 2013, 8, e65832.	2.5	17
122	An IS15 insertion generates an eight-base-pair duplication of the target DNA. Gene, 1983, 24, 125-129.	2.2	16
123	Rga, a RofA-Like Regulator, Is the Major Transcriptional Activator of the PI-2a Pilus inStreptococcus agalactiae. Microbial Drug Resistance, 2012, 18, 286-297.	2.0	15
124	Molecular Characterization of Streptococcus agalactiae Isolates Harboring Small <i>erm</i> (T)-Carrying Plasmids. Antimicrobial Agents and Chemotherapy, 2014, 58, 6928-6930.	3.2	15
125	To give or not to give antibiotics is not the only question. Lancet Infectious Diseases, The, 2021, 21, e191-e201.	9.1	14
126	The CovR regulatory network drives the evolution of Group B Streptococcus virulence. PLoS Genetics, 2021, 17, e1009761.	3.5	13

#	Article	IF	CITATIONS
127	A Safe and Stable Neonatal Vaccine Targeting GAPDH Confers Protection against Group B Streptococcus Infections in Adult Susceptible Mice. PLoS ONE, 2015, 10, e0144196.	2.5	11
128	Characterization of a Four-Component Regulatory System Controlling Bacteriocin Production in Streptococcus gallolyticus. MBio, 2021, 12, .	4.1	11
129	Comparative evaluation of VITEK 2® for antimicrobial susceptibility testing of group B Streptococcus. Journal of Antimicrobial Chemotherapy, 2007, 59, 1109-1113.	3.0	9
130	Insights into Streptococcus agalactiae PI-2b pilus biosynthesis and role in adherence to host cells. Microbes and Infection, 2019, 21, 99-103.	1.9	8
131	(p)ppGpp/GTP and Malonyl-CoA Modulate Staphylococcus aureus Adaptation to FASII Antibiotics and Provide a Basis for Synergistic Bi-Therapy. MBio, 2021, 12, .	4.1	8
132	Molecular Basis for Different Levels of <i>tet</i> (M) Expression in Streptococcus pneumoniae Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2012, 56, 5040-5045.	3.2	7
133	Evidence for the Sialylation of PilA, the PI-2a Pilus-Associated Adhesin of Streptococcus agalactiae Strain NEM316. PLoS ONE, 2015, 10, e0138103.	2.5	6
134	Heterogeneous expression of Pil3 pilus is critical for Streptococcus gallolyticus translocation across polarized colonic epithelial monolayers. Microbes and Infection, 2020, 22, 55-59.	1.9	3
135	Maternal vaccination against group B Streptococcus glyceraldehyde-3-phosphate dehydrogenase leads to gut dysbiosis in the offspring. Brain, Behavior, and Immunity, 2022, 103, 186-201.	4.1	3
136	Enhanced conjugative transfer of plasmid DNA from Escherichia coli to Staphylococcus aureus and Listeria monocytogenes. FEMS Microbiology Letters, 1993, 109, 19-23.	1.8	1