
Weibo Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3721073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CancerMIRNome: an interactive analysis and visualization database for miRNome profiles of human cancer. Nucleic Acids Research, 2022, 50, D1139-D1146.	6.5	49
2	Pervasive misannotation of microexons that are evolutionarily conserved and crucial for gene function in plants. Nature Communications, 2022, 13, 820.	5.8	4
3	Multi-omics analysis dissects the genetic architecture of seed coat content in Brassica napus. Genome Biology, 2022, 23, 86.	3.8	23
4	Fixation of hybrid sterility genes and favorable alleles of key yield-related genes with dominance contribute to the high yield of the Yongyou series of intersubspecific hybrid rice. Journal of Genetics and Genomics, 2022, 49, 448-457.	1.7	2
5	Identification of Expression QTL by QTLtools in a Rice Recombinant Inbred Line Population. Bio-protocol, 2022, , .	0.2	0
6	Boosting predictabilities of agronomic traits in rice using bivariate genomic selection. Briefings in Bioinformatics, 2021, 22, .	3.2	6
7	Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Molecular Plant, 2021, 14, 470-487.	3.9	107
8	Genome-wide association study of flowering time reveals complex genetic heterogeneity and epistatic interactions in rice. Gene, 2021, 770, 145353.	1.0	6
9	PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants. Nucleic Acids Research, 2021, 49, W523-W529.	6.5	20
10	Two gap-free reference genomes and a global view of the centromere architecture in rice. Molecular Plant, 2021, 14, 1757-1767.	3.9	133
11	Bract suppression regulated by the miR156/529-SPLs-NL1-PLA1 module is required for the transition from vegetative to reproductive branching in rice. Molecular Plant, 2021, 14, 1168-1184.	3.9	35
12	The Bnapus50K array: a quick and versatile genotyping tool for <i>Brassica napus</i> genomic breeding and research. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	11
13	An inferred functional impact map of genetic variants in rice. Molecular Plant, 2021, 14, 1584-1599.	3.9	48
14	Analysis of trait heritability in functionally partitioned rice genomes. Heredity, 2020, 124, 485-498.	1.2	7
15	Features of sRNA biogenesis in rice revealed by genetic dissection of sRNA expression level. Computational and Structural Biotechnology Journal, 2020, 18, 3207-3216.	1.9	2
16	ATAC-seq with unique molecular identifiers improves quantification and footprinting. Communications Biology, 2020, 3, 675.	2.0	21
17	A laminâ€like protein OsNMCP1 regulates drought resistance and root growth through chromatin accessibility modulation by interacting with a chromatin remodeller OsSWI3C in rice. New Phytologist, 2020, 227, 65-83.	3.5	20
18	Genomeâ€wide association analyses reveal the genetic basis of combining ability in rice. Plant Biotechnology Journal, 2019, 17, 2211-2222.	4.1	26

#	Article	IF	CITATIONS
19	Identification of optimal prediction models using multi-omic data for selecting hybrid rice. Heredity, 2019, 123, 395-406.	1.2	43
20	A directed learning strategy integrating multiple omic data improves genomic prediction. Plant Biotechnology Journal, 2019, 17, 2011-2020.	4.1	29
21	Genome sequence of the model rice variety KitaakeX. BMC Genomics, 2019, 20, 905.	1.2	59
22	Rice Information GateWay: A Comprehensive Bioinformatics Platform for Indica Rice Genomes. Molecular Plant, 2018, 11, 505-507.	3.9	33
23	The E3 Ubiquitin Ligase HAF1 Modulates Circadian Accumulation of EARLY FLOWERING3 to Control Heading Date in Rice under Long-Day Conditions. Plant Cell, 2018, 30, 2352-2367.	3.1	28
24	Genome-Wide Association Studies Reveal the Genetic Basis of Ionomic Variation in Rice. Plant Cell, 2018, 30, 2720-2740.	3.1	164
25	Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling. Nature Communications, 2018, 9, 2523.	5.8	60
26	Genome-wide association studies reveal that members of bHLH subfamily 16 share a conserved function in regulating flag leaf angle in rice (Oryza sativa). PLoS Genetics, 2018, 14, e1007323.	1.5	52
27	Genome-wide Association Analyses Reveal the Genetic Basis of Stigma Exsertion in Rice. Molecular Plant, 2017, 10, 634-644.	3.9	66
28	Genetic Architecture of Natural Variation in Rice Nonphotochemical Quenching Capacity Revealed by Genome-Wide Association Study. Frontiers in Plant Science, 2017, 8, 1773.	1.7	33
29	Genomeâ€Wide Association Analysis Reveals Different Genetic Control in Panicle Architecture Between <i>Indica</i> and <i>Japonica</i> Rice. Plant Genome, 2016, 9, plantgenome2015.11.0115.	1.6	57
30	Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation. Scientific Reports, 2016, 6, 18936.	1.6	68
31	Origination and Establishment of a Trigenic Reproductive Isolation System in Rice. Molecular Plant, 2016, 9, 1542-1545.	3.9	18
32	Extensive sequence divergence between the reference genomes of two elite <i>indica</i> rice varieties Zhenshan 97 and Minghui 63. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5163-71.	3.3	211
33	Building two indica rice reference genomes with PacBio long-read and Illumina paired-end sequencing data. Scientific Data, 2016, 3, 160076.	2.4	34
34	Genomewide association analysis for awn length linked to the seed shattering gene qSH1 in rice. Journal of Genetics, 2016, 95, 639-646.	0.4	10
35	A Novel Tiller Angle Gene, TAC3, together with TAC1 and D2 Largely Determine the Natural Variation of Tiller Angle in Rice Cultivars. PLoS Genetics, 2016, 12, e1006412.	1.5	106
36	Genome-wide Association Study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice. BMC Plant Biology, 2015, 15, 218.	1.6	116

#	Article	IF	CITATIONS
37	RiceVarMap: a comprehensive database of rice genomic variations. Nucleic Acids Research, 2015, 43, D1018-D1022.	6.5	219
38	Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice. Scientific Reports, 2015, 5, 7663.	1.6	61
39	Transcriptome-based analysis of mitogen-activated protein kinase cascades in the rice response to Xanthomonas oryzae infection. Rice, 2015, 8, 4.	1.7	36
40	Genetic Architecture of Natural Variation in Rice Chlorophyll Content Revealed by a Genome-Wide Association Study. Molecular Plant, 2015, 8, 946-957.	3.9	106
41	Loss of function of OsMADS3 via the insertion of a novel retrotransposon leads to recessive male sterility in rice (Oryza sativa). Plant Science, 2015, 238, 188-197.	1.7	14
42	Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biology, 2015, 16, 187.	3.8	90
43	Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5411-9.	3.3	165
44	Genetic basis of sRNA quantitative variation analyzed using an experimental population derived from an elite rice hybrid. ELife, 2015, 4, e04250.	2.8	12
45	Identification of quantitative trait loci for phosphorus use efficiency traits in rice using a high density SNP map. BMC Genetics, 2014, 15, 155.	2.7	26
46	Natural Variation in the Sequence of SNAC1 and Its Expression Level Polymorphism in Rice Germplasms under Drought Stress. Journal of Genetics and Genomics, 2014, 41, 609-612.	1.7	14
47	A wholeâ€genome <scp>SNP</scp> array (<scp>RICE</scp> 6 <scp>K</scp>) for genomic breeding in rice. Plant Biotechnology Journal, 2014, 12, 28-37.	4.1	163
48	Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nature Communications, 2014, 5, 5087.	5.8	490
49	OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nature Communications, 2014, 5, 4847.	5.8	214
50	Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nature Genetics, 2014, 46, 398-404.	9.4	281
51	An expression quantitative trait loci-guided co-expression analysis for constructing regulatory network using a rice recombinant inbred line population. Journal of Experimental Botany, 2014, 65, 1069-1079.	2.4	74
52	A High-Density SNP Genotyping Array for Rice Biology and Molecular Breeding. Molecular Plant, 2014, 7, 541-553.	3.9	251
53	Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nature Genetics, 2014, 46, 714-721.	9.4	560
54	QTL Scanning for Rice Yield Using a Whole Genome SNP Array. Journal of Genetics and Genomics, 2013, 40, 629-638.	1.7	21

#	Article	IF	CITATIONS
55	Comparative Analysis of Differentially Expressed Genes in Rice Under Nitrogen and Phosphorus Starvation Stress Conditions. Plant Molecular Biology Reporter, 2013, 31, 160-173.	1.0	45
56	Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Research, 2013, 23, 969-971.	5.7	222
57	Genetic composition of yield heterosis in an elite rice hybrid. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15847-15852.	3.3	214
58	RNA-Directed DNA Methylation Is Involved in Regulating Photoperiod-Sensitive Male Sterility in Rice. Molecular Plant, 2012, 5, 1210-1216.	3.9	127
59	Rice functional genomics research: Progress and implications for crop genetic improvement. Biotechnology Advances, 2012, 30, 1059-1070.	6.0	100
60	Transcriptome response to nitrogen starvation in rice. Journal of Biosciences, 2012, 37, 731-747.	0.5	124
61	The Rice B-Box Zinc Finger Gene Family: Genomic Identification, Characterization, Expression Profiling and Diurnal Analysis. PLoS ONE, 2012, 7, e48242.	1.1	120
62	Transcriptome response to phosphorus starvation in rice. Acta Physiologiae Plantarum, 2012, 34, 327-341.	1.0	26
63	Reasons for lower transformation efficiency in indica rice using Agrobacterium tumefaciens-mediated transformation: lessons from transformation assays and genome-wide expression profiling. Plant Molecular Biology, 2012, 78, 1-18.	2.0	45
64	Comprehensive Sequence and Whole-Life-Cycle Expression Profile Analysis of the Phosphate Transporter Gene Family in Rice. Molecular Plant, 2011, 4, 1105-1122.	3.9	134
65	Dynamic programming procedure for searching optimal models to estimate substitution rates based on the maximum-likelihood method. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7860-7865.	3.3	15
66	Gains in QTL Detection Using an Ultra-High Density SNP Map Based on Population Sequencing Relative to Traditional RFLP/SSR Markers. PLoS ONE, 2011, 6, e17595.	1.1	228
67	Genomic survey, characterization and expression profile analysis of the peptide transporter family in rice (Oryza sativa L.). BMC Plant Biology, 2010, 10, 92.	1.6	46
68	A dynamic gene expression atlas covering the entire life cycle of rice. Plant Journal, 2010, 61, 752-766.	2.8	326
69	A global analysis of QTLs for expression variations in rice shoots at the early seedling stage. Plant Journal, 2010, 63, 1063-1074.	2.8	69
70	Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10578-10583.	3.3	299
71	Exploring transcriptional signalling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice. BMC Plant Biology, 2009, 9, 74.	1.6	68
72	Expression profile of calcium-dependent protein kinase (CDPKs) genes during the whole lifespan and under phytohormone treatment conditions in rice (Oryza sativa L. ssp. indica). Plant Molecular Biology, 2009, 70, 311-325.	2.0	63

#	Article	IF	CITATIONS
73	Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice. Plant Molecular Biology, 2009, 70, 341-357.	2.0	95
74	Single feature polymorphisms between two rice cultivars detected using a median polish method. Theoretical and Applied Genetics, 2009, 119, 151-164.	1.8	13
75	Molecular analyses of the rice glutamate dehydrogenase gene family and their response to nitrogen and phosphorous deprivation. Plant Cell Reports, 2009, 28, 1115-1126.	2.8	47
76	Multiple gene loci affecting genetic background-controlled disease resistance conferred by R gene Xa3/Xa26 in rice. Theoretical and Applied Genetics, 2009, 120, 127-138.	1.8	25
77	Aspartic proteases gene family in rice: Gene structure and expression, predicted protein features and phylogenetic relation. Gene, 2009, 442, 108-118.	1.0	63
78	Sequence and expression analysis of the thioredoxin protein gene family in rice. Molecular Genetics and Genomics, 2008, 280, 139-51.	1.0	58
79	KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Molecular Genetics and Genomics, 2008, 280, 437-52.	1.0	129
80	Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Molecular Genetics and Genomics, 2008, 280, 547-563.	1.0	411
81	Comprehensive sequence and expression profile analysis of PEX11 gene family in rice. Gene, 2008, 412, 59-70.	1.0	29
82	Rice Gene Network Inferred from Expression Profiling of Plants Overexpressing OsWRKY13, a Positive Regulator of Disease Resistance. Molecular Plant, 2008, 1, 538-551.	3.9	52
83	Rice Gene Network Inferred from Expression Profiling of Plants Overexpressing OsWRKY13, a Positive Regulator of Disease Resistance. Molecular Plant, 2008, 1, 538-551.	3.9	131