George B Mcmanus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3720966/publications.pdf

Version: 2024-02-01

65 papers 4,025 citations

32 h-index 58 g-index

68 all docs 68
docs citations

68 times ranked

4220 citing authors

#	Article	IF	CITATIONS
1	Genome architecture used to supplement species delineation in two cryptic marine ciliates. Molecular Ecology Resources, 2022, 22, 2880-2896.	4.8	3
2	Distribution Patterns of Ciliate Diversity in the South China Sea. Frontiers in Microbiology, 2021, 12, 689688.	3.5	5
3	Insights into protist diversity and biogeography in intertidal sediments sampled across a range of spatial scales. Limnology and Oceanography, 2020, 65, 1103-1115.	3.1	28
4	Combined Genome and Transcriptome Analyses of the Ciliate Schmidingerella arcuata (Spirotrichea) Reveal Patterns of DNA Elimination, Scrambling, and Inversion. Genome Biology and Evolution, 2020, 12, 1616-1622.	2.5	7
5	Perspectives from Ten Years of Protist Studies by Highâ€Throughput Metabarcoding. Journal of Eukaryotic Microbiology, 2020, 67, 612-622.	1.7	72
6	Incubation and grazing effects on spirotrich ciliate diversity inferred from molecular analyses of microcosm experiments. PLoS ONE, 2019, 14, e0215872.	2.5	9
7	Global and local DNA (meta)barcoding reveal new biogeography patterns in tintinnid ciliates. Journal of Plankton Research, 2018, 40, 209-221.	1.8	30
8	The diversity and biogeography of abundant and rare intertidal marine microeukaryotes explained by environment and dispersal limitation. Environmental Microbiology, 2018, 20, 462-476.	3.8	112
9	<i>Dartintinnus alderae</i> n. g., n. sp., a Brackish Water Tintinnid (Ciliophora, Spirotrichea) with Dualâ€ended Lorica Collapsibility. Journal of Eukaryotic Microbiology, 2018, 65, 400-411.	1.7	15
10	Strombidium rassoulzadegani: A Model Species for Chloroplast Retention in Oligotrich Ciliates. Frontiers in Marine Science, 2018, 5, .	2.5	33
11	Integrating dimensions of biodiversity in choreotrichs and oligotrichs of marine plankton. European Journal of Protistology, 2017, 61, 323-330.	1.5	17
12	Phylogeny, classification and diversity of Choreotrichia and Oligotrichia (Ciliophora, Spirotrichea). Molecular Phylogenetics and Evolution, 2017, 112, 12-22.	2.7	53
13	Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170664.	2.6	63
14	Growth, grazing, and inorganic C and N uptake in a mixotrophic and a heterotrophic ciliate. Journal of Plankton Research, 2017, 39, 379-391.	1.8	28
15	Distribution of Abundant and Active Planktonic Ciliates in Coastal and Slope Waters Off New England. Frontiers in Microbiology, 2017, 8, 2178.	3.5	14
16	Patchiness of Ciliate Communities Sampled at Varying Spatial Scales along the New England Shelf. PLoS ONE, 2016, 11, e0167659.	2.5	17
17	Unexpected biodiversity of ciliates in marine samples from below the photic zone. Molecular Ecology, 2016, 25, 3987-4000.	3.9	48
18	Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies. Protist, 2016, 167, 106-120.	1.5	290

#	Article	IF	CITATIONS
19	Patterns and processes in microbial biogeography: do molecules and morphologies give the same answers?. ISME Journal, 2016, 10, 1779-1790.	9.8	62
20	Discrimination of Closely Related Species in Tintinnid Ciliates: New Insights on Crypticity and Polymorphism in the Genus Helicostomella. Protist, 2015, 166, 78-92.	1.5	41
21	Space station image captures a red tide ciliate bloom at high spectral and spatial resolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14783-14787.	7.1	52
22	The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing. PLoS Biology, 2014, 12, e1001889.	5.6	885
23	Biology and Ecology of Long Island Sound. Springer Series on Environmental Management, 2014, , 285-479.	0.3	17
24	Diversity of diversity: conceptual and methodological differences in biodiversity estimates of eukaryotic microbes as compared to bacteria. Trends in Microbiology, 2014, 22, 432-437.	7.7	34
25	Microfluidic passive samplers for in situ collection of live aquatic protists. Analytical Methods, 2014, 6, 8350-8357.	2.7	4
26	Pyrosequencing for assessing diversity of eukaryotic microbes: analysis of data on marine planktonic ciliates and comparison with traditional methods. Environmental Microbiology, 2014, 16, 2752-2763.	3.8	61
27	Trophic Links in the Plankton in the Low Salinity Zone of a Large Temperate Estuary: Top-down Effects of Introduced Copepods. Estuaries and Coasts, 2014, 37, 576-588.	2.2	24
28	De Novo Transcriptomes of a Mixotrophic and a Heterotrophic Ciliate from Marine Plankton. PLoS ONE, 2014, 9, e101418.	2.5	29
29	Utility of Genetic Markers and Morphology for Species Discrimination within the Order Tintinnida (Ciliophora, Spirotrichea). Protist, 2013, 164, 24-36.	1.5	60
30	Chloroplast symbiosis in a marine ciliate: ecophysiology and the risks and rewards of hosting foreign organelles. Frontiers in Microbiology, 2012, 3, 321.	3.5	35
31	Phylogeny of the Order Tintinnida (Ciliophora, Spirotrichea) Inferred from Small―and Largeâ€6ubunit <scp>rRNA</scp> Genes. Journal of Eukaryotic Microbiology, 2012, 59, 423-426.	1.7	13
32	Microzooplankton Grazing in Green Waterâ€"Results from Two Contrasting Estuaries. Estuaries and Coasts, 2011, 34, 373-385.	2.2	20
33	Genetic Identities of Cryptic Species in the <i>Strombidium stylifer/apolatum/oculatum</i> Cluster, Including a Description of <i>Strombidium rassoulzadegani</i> n. sp Journal of Eukaryotic Microbiology, 2010, 57, 369-378.	1.7	51
34	Ciliate diversity and distribution across an environmental and depth gradient in Long Island Sound, USA. Environmental Microbiology, 2010, 12, 886-898.	3.8	42
35	Diversity of Oligotrichia and Choreotrichia Ciliates in Coastal Marine Sediments and in Overlying Plankton. Applied and Environmental Microbiology, 2010, 76, 3924-3935.	3.1	34
36	Molecular and morphological methods for identifying plankton: what makes a successful marriage?. Journal of Plankton Research, 2009, 31, 1119-1129.	1.8	128

#	Article	IF	CITATIONS
37	Use of species-specific primers and PCR to measure the distributions of planktonic ciliates in coastal waters. Limnology and Oceanography: Methods, 2007, 5, 163-173.	2.0	18
38	Microzooplankton grazing of phytoplankton in a tropical upwelling region. Hydrobiologia, 2007, 575, 69-81.	2.0	35
39	Marine planktonic ciliates that prey on macroalgae and enslave their chloroplasts. Limnology and Oceanography, 2004, 49, 308-313.	3.1	41
40	Feeding by ciliates on two harmful algal bloom species, Prymnesium parvum and Prorocentrum minimum. Harmful Algae, 2003, 2, 109-126.	4.8	70
41	Insights into the diversity of choreotrich and oligotrich ciliates (Class: Spirotrichea) based on genealogical analyses of multiple loci International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 1901-1913.	1.7	59
42	Microzooplankton Grazing and Nitrogen Excretion across a Surface Estuarine-Coastal Interface. Estuaries and Coasts, 1999, 22, 113.	1.7	48
43	Food type and concentration affect chlorophyll and carotenoid destruction during copepod feeding. Limnology and Oceanography, 1999, 44, 2005-2011.	3.1	31
44	Lipid Composition of the Marine Ciliates Pleuronema sp. and Fabrea salina: Shifts in Response to Changes in Diet. Journal of Eukaryotic Microbiology, 1997, 44, 189-193.	1.7	51
45	Toxicology of Aquatic Pollution: Physiological, Cellular and Molecular Approaches.E. W. Taylor. Quarterly Review of Biology, 1997, 72, 484-485.	0.1	0
46	Phytoplankton abundance and pigment changes during simulated in situ dilution experiments in estuarine waters: possible artifacts caused by algal light adaptation. Journal of Plankton Research, 1995, 17, 1705-1716.	1.8	26
47	Trophic transfer of fatty acids, sterols, and a triterpenoid alcohol between bacteria, a ciliate, and the copepod <i>Acartia tonsa </i> <ir> <ii>Iimnology and Oceanography, 1995, 40, 860-867.</ii></ir>	3.1	196
48	Marine ciliates as a widespread source of tetrahymanol and hopan- $3\hat{l}^2$ -ol in sediments. Geochimica Et Cosmochimica Acta, 1991, 55, 3387-3390.	3.9	167
49	On the use of surrogate food particles to measure protistan ingestion. Limnology and Oceanography, 1991, 36, 613-617.	3.1	47
50	Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnology and Oceanography, 1990, 35, 795-808.	3.1	176
51	Control of marine bacterioplankton populations: Measurement and significance of grazing. Hydrobiologia, 1988, 159, 51-62.	2.0	96
52	The nearshore zone during coastal upwelling: Daily variability and coupling between primary and secondary production off central Chile. Progress in Oceanography, 1988, 20, 1-40.	3.2	134
53	Photosynthetic pigments in the ciliate Laboea strobila from Long Island Sound, USA. Journal of Plankton Research, 1986, 8, 317-327.	1.8	83
54	Does adenine incorporation into nucleic acids measure total microbial production?1. Limnology and Oceanography, 1986, 31, 627-636.	3.1	27

#	Article	IF	CITATIONS
55	Adenine and total microbial production: A reply. Limnology and Oceanography, 1986, 31, 1395-1400.	3.1	8
56	Bacterivory in seawater studied with the use of inert fluorescent particles1. Limnology and Oceanography, 1986, 31, 420-426.	3.1	92
57	A Guided Tour of the Living Cell.Christian de Duve. Quarterly Review of Biology, 1986, 61, 165-166.	0.1	O
58	Spiders of the World. Rod Preston-Mafham , Ken Preston-Mafham. Quarterly Review of Biology, 1985, 60, 227-228.	0.1	0
59	Changes in the Land: Indians, Colonists, and the Ecology of New England. William Cronon. Quarterly Review of Biology, 1985, 60, 245-246.	0.1	0
60	Coastal Waders and Wildfowl in Winter.P. R. Evans , J. D. Goss-Custard , W. G. Hale. Quarterly Review of Biology, 1985, 60, 366-366.	0.1	0
61	Mountain Time.Paul Schullery. Quarterly Review of Biology, 1985, 60, 379-380.	0.1	0
62	Do Bacteria-Sized Marine Eukaryotes Consume Significant Bacterial Production?. Science, 1984, 224, 1257-1260.	12.6	125
63	Nature Through Tropical Windows.Alexander F. Skutch. Quarterly Review of Biology, 1984, 59, 306-307.	0.1	0
64	Factors affecting the elimination of PCBs in the marine copepod Acartia tonsa. Estuarine, Coastal and Shelf Science, 1983, 17, 421-430.	2.1	45
65	Advances in Microbial Ecology. K. C. Marshall. Quarterly Review of Biology, 1983, 58, 565-565.	0.1	0