Tatsuro Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3720339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chemistry, 2008, 110, 814-820.	8.2	157
2	Effects of UV-B radiation, cold and desiccation stress on rutin concentration and rutin glucosidase activity in tartary buckwheat (Fagopyrum tataricum) leaves. Plant Science, 2005, 168, 1303-1307.	3.6	125
3	Purification and characterization of flavonol 3-glucosidase, and its activity during ripening in tartary buckwheat seeds. Plant Science, 2002, 163, 417-423.	3.6	100
4	Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biology, 2021, 22, 23.	8.8	69
5	Identification of Anthocyanins in the Sprouts of Buckwheat. Journal of Agricultural and Food Chemistry, 2007, 55, 6314-6318.	5.2	65
6	Breeding of â€~Manten-Kirari', a non-bitter and trace-rutinosidase variety of Tartary buckwheat (Fagopyrum tataricum Gaertn.). Breeding Science, 2014, 64, 344-350.	1.9	55
7	Effectiveness of rutin-rich Tartary buckwheat (Fagopyrum tataricum Gaertn.) â€~Manten-Kirari' in body weight reduction related to its antioxidant properties: A randomised, double-blind, placebo-controlled study. Journal of Functional Foods, 2016, 26, 460-469.	3.4	55
8	Characterization of peroxidase in buckwheat seed. Phytochemistry, 2006, 67, 219-224.	2.9	54
9	Differential Expression of Anthocyanin Biosynthetic Genes and Anthocyanin Accumulation in Tartary Buckwheat Cultivars â€~Hokkai T8' and â€~Hokkai T10'. Journal of Agricultural and Food Chemistry, 2011, 2356-2361.	5592	52
10	A time-course study of flavonoids in the sprouts of tartary (Fagopyrum tataricum Gaertn.) buckwheats. Scientia Horticulturae, 2007, 115, 13-18.	3.6	43
11	Effect of Natural Light Periods on Rutin, Free Amino Acid and Vitamin C Contents in the Sprouts of Common (Fagopyrum esculentum Moench) and Tartary (F. tataricum Gaertn.) Buckwheats. Food Science and Technology Research, 2006, 12, 199-205.	0.6	42
12	Present status and future perspectives of breeding for buckwheat quality. Breeding Science, 2020, 70, 48-66.	1.9	42
13	Metabolomic Analysis and Phenylpropanoid Biosynthesis in Hairy Root Culture of Tartary Buckwheat Cultivars. PLoS ONE, 2013, 8, e65349.	2.5	38
14	Physiological Roles of Rutin in the Buckwheat Plant. Japan Agricultural Research Quarterly, 2015, 49, 37-43.	0.4	37
15	Characterization of a flavonoid 3-O-glucosyltransferase and its activity during cotyledon growth in buckwheat (Fagopyrum esculentum). Plant Science, 2005, 169, 943-948.	3.6	35
16	Discovery and genetic analysis of non-bitter Tartary buckwheat (Fagopyrum tataricum Gaertn.) with trace-rutinosidase activity. Breeding Science, 2014, 64, 339-343.	1.9	31
17	Acute and Subacute Toxicity Studies on Rutin-Rich Tartary Buckwheat Dough in Experimental Animals. Journal of Nutritional Science and Vitaminology, 2015, 61, 175-181.	0.6	27
18	Effects of lipase, lipoxygenase, peroxidase and free fatty acids on volatile compound found in boiled buckwheat noodles. Journal of the Science of Food and Agriculture, 2010, 90, 1232-1237.	3.5	26

TATSURO SUZUKI

#	Article	IF	CITATIONS
19	Characterization of Rutin-rich Bread Made with â€~Manten-Kirari', a Trace-rutinosidase Variety of Tartary Buckwheat (<i>Fagopyrum tataricum</i> Gaertn.). Food Science and Technology Research, 2015, 21, 733-738.	0.6	25
20	In-gel detection and study of the role of flavonol 3-glucosidase in the bitter taste generation in tartary buckwheat. Journal of the Science of Food and Agriculture, 2004, 84, 1691-1694.	3.5	23
21	Antioxidative Activities in Rutin Rich Noodles and Cookies Made with a Trace Rutinosidase Variety of Tartary Buckwheat (<i>Fagopyrum tataricum</i> Gaertn.), â€~Manten-Kirari'. Food Science and Technology Research, 2016, 22, 557-562.	0.6	23
22	Timeâ^'Course Study and Effects of Drying Method on Concentrations of γ-Aminobutyric Acid, Flavonoids, Anthocyanin, and 2′′-Hydroxynicotianamine in Leaves of Buckwheats. Journal of Agricultural and Food Chemistry, 2009, 57, 259-264.	5.2	21
23	Effects of Lipase, Lipoxygenase, Peroxidase, and Rutin on Quality Deteriorations in Buckwheat Flour. Journal of Agricultural and Food Chemistry, 2005, 53, 8400-8405.	5.2	19
24	Changes in rutin concentration and flavonol-3-glucosidase activity during seedling growth in tartary buckwheat (<i>Fagopyrum tataricum</i> Gaertn.). Canadian Journal of Plant Science, 2007, 87, 83-87.	0.9	19
25	Purification and Characterization of Lipase in Buckwheat Seed. Journal of Agricultural and Food Chemistry, 2004, 52, 7407-7411.	5.2	17
26	Breeding of Buckwheat to Reduce Bitterness and Rutin Hydrolysis. Plants, 2021, 10, 791.	3.5	17
27	Structural Identification of Anthocyanins and Analysis of Concentrations during Growth and Flowering in Buckwheat (<i>Fagopyrum esculentum</i> Moench) Petals. Journal of Agricultural and Food Chemistry, 2007, 55, 9571-9575.	5.2	15
28	Emasculation of Tartary buckwheat (Fagopyrum tataricum Gaertn.) using hot water. Euphytica, 2007, 156, 319-326.	1.2	15
29	Traits of shattering resistant buckwheat â€~W/SK86GF'. Breeding Science, 2012, 62, 360-364.	1.9	14
30	A methodology for heterosis breeding of common buckwheat involving the use of the self-compatibility gene derived from Fagopyrum homotropicum. Euphytica, 2010, 172, 207-214.	1.2	11
31	Development of a DNA marker for variety discrimination specific to â€ ⁻ Manten-Kirari' based on an NGS-RNA sequence in Tartary buckwheat (Fagopyrum tataricum). Food Chemistry, 2019, 295, 51-57.	8.2	11
32	Suitability of Rice-Tartary Buckwheat for Crossbreeding and for Utilization of Rutin. Japan Agricultural Research Quarterly, 2009, 43, 199-206.	0.4	11
33	Identification of a gene encoding glutathione S-transferase that is related to anthocyanin accumulation in buckwheat (Fagopyrum esculentum). Journal of Plant Physiology, 2018, 231, 291-296.	3.5	10
34	The effect of grain moisture contents on the roll milling characteristics of Tartary buckwheat cultivar â€~Manten-Kirari'. Plant Production Science, 2020, 23, 539-546.	2.0	10
35	Development of Rutin-rich Noodles Using Trace-rutinosidase Variety of Tartary Buckwheat (<i>Fagopyrum Tataricum</i> Gaertn.) â€~Manten-Kirari'. Food Science and Technology Research, 2019, 25, 915-920.	0.6	10
36	Growth and yield of self-compatible and hybrid common buckwheat lines pollinated with and without flies. Plant Production Science, 2017, 20, 384-388.	2.0	8

TATSURO SUZUKI

#	Article	IF	CITATION	s
37	Development of Novel Detection Method for Rutinosidase in Tartary Buckwheat (Fagopyrum tataricum) Tj ETQq1	1 ₃ .578431	.4 rgBT /O	
38	Effects of annual fluctuation of environmental factors on starch properties in potato tuber development. Starch/Staerke, 2012, 64, 229-236.	2.1	7	
39	Characterization of Peroxidase in Tartary Buckwheat Seed. Food Science and Technology Research, 2012, 18, 571-575.	0.6	6	
40	Effect of storage temperature on occurrence of secondary dormancy in buckwheat seeds. Seed Science and Technology, 2020, 48, 257-267.	1.4	5	
41	Effect of Sodium Bicarbonate on Rutin Residual Ratio in Tartary Buckwheat (<i>Fagopyrum) Tj ETQq1 1 0.78</i>	4314 rgBT 0.6	/Overlock	
42	Breeding of Buckwheat for Usage of Sprout and Pre-Harvest Sprouting Resistance. Plants, 2021, 10, 997.	3.5	4	
43	Hypoxia tolerance of four millet species is attributable to constitutive aerenchyma formation and root hair development of adventitious roots. Plant Production Science, 2022, 25, 157-171.	2.0	4	
44	Effects of metal ions on the activity and stability of peroxidase in Tartary buckwheat shoots. Journal of Agricultural Chemistry and Environment, 2013, 02, 59-64.	0.5	3	
45	Traits of a selfâ€pollinating and preharvestâ€sproutingâ€resistant line of summer buckwheat (Fagopyrum) Tj ETÇ	0q1 _{.9} 1 0.78	4314 rgBi	
46	Development of selfâ€pollinating breeding line with closedâ€flowering traits in buckwheat (Fagopyrum) Tj ETQq0) 0 0 rgBT , 1.9	/Qverlock	1(

47Possible roles of insoluble proanthocyanidin in Tartary buckwheat (Fagopyrum tataricum) leaves.1.901.9