
Brenton R Graveley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/372023/publications.pdf Version: 2024-02-01

REENTON R CRAVELEY

#	Article	IF	CITATIONS
1	Expansion of the eukaryotic proteome by alternative splicing. Nature, 2010, 463, 457-463.	27.8	1,787
2	The developmental transcriptome of Drosophila melanogaster. Nature, 2011, 471, 473-479.	27.8	1,379
3	Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature, 2020, 583, 699-710.	27.8	1,252
4	Identification of Functional Elements and Regulatory Circuits by <i>Drosophila</i> modENCODE. Science, 2010, 330, 1787-1797.	12.6	1,124
5	Alternative splicing: increasing diversity in the proteomic world. Trends in Genetics, 2001, 17, 100-107.	6.7	1,120
6	Sorting out the complexity of SR protein functions. Rna, 2000, 6, 1197-1211.	3.5	922
7	RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex. Cell, 2009, 139, 945-956.	28.9	919
8	Genome-wide Analysis of Drosophila Circular RNAs Reveals Their Structural and Sequence Properties and Age-Dependent Neural Accumulation. Cell Reports, 2014, 9, 1966-1980.	6.4	866
9	Codon Optimality Is a Major Determinant of mRNA Stability. Cell, 2015, 160, 1111-1124.	28.9	792
10	A large-scale binding and functional map of human RNA-binding proteins. Nature, 2020, 583, 711-719.	27.8	667
11	Diversity and dynamics of the Drosophila transcriptome. Nature, 2014, 512, 393-399.	27.8	647
12	Sequence, Structure, and Context Preferences of Human RNA Binding Proteins. Molecular Cell, 2018, 70, 854-867.e9.	9.7	408
13	Regulatory divergence in <i>Drosophila</i> revealed by mRNA-seq. Genome Research, 2010, 20, 816-825.	5.5	385
14	Dynamic Integration of Splicing within Gene Regulatory Pathways. Cell, 2013, 152, 1252-1269.	28.9	371
15	Genomewide characterization of non-polyadenylated RNAs. Genome Biology, 2011, 12, R16.	9.6	365
16	Comparative analysis of the transcriptome across distant species. Nature, 2014, 512, 445-448.	27.8	289
17	Identification of alternative splicing regulators by RNA interference in Drosophila. Proceedings of the United States of America, 2004, 101, 15974-15979.	7.1	275
18	Essential Features and Rational Design of CRISPR RNAs that Function with the Cas RAMP Module Complex to Cleave RNAs. Molecular Cell, 2012, 45, 292-302.	9.7	275

#	Article	IF	CITATIONS
19	Mutually Exclusive Splicing of the Insect Dscam Pre-mRNA Directed by Competing Intronic RNA Secondary Structures. Cell, 2005, 123, 65-73.	28.9	271
20	The transcriptional diversity of 25 <i>Drosophila</i> cell lines. Genome Research, 2011, 21, 301-314.	5.5	235
21	Pervasive Chromatin-RNA Binding Protein Interactions Enable RNA-Based Regulation of Transcription. Cell, 2019, 178, 107-121.e18.	28.9	224
22	RNA structure and the mechanisms of alternative splicing. Current Opinion in Genetics and Development, 2011, 21, 373-379.	3.3	222
23	Genome-wide analysis of promoter architecture in <i>Drosophila melanogaster</i> . Genome Research, 2011, 21, 182-192.	5.5	211
24	Conservation of an RNA regulatory map between <i>Drosophila</i> and mammals. Genome Research, 2011, 21, 193-202.	5.5	208
25	Distal Alternative Last Exons Localize mRNAs to Neural Projections. Molecular Cell, 2016, 61, 821-833.	9.7	208
26	The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. Rna, 2008, 14, 1174-1186.	3.5	207
27	Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila. Cell Reports, 2012, 1, 277-289.	6.4	201
28	mRNA Deadenylation Is Coupled to Translation Rates by the Differential Activities of Ccr4-Not Nucleases. Molecular Cell, 2018, 70, 1089-1100.e8.	9.7	182
29	Arginine/Serine-Rich Domains of SR Proteins Can Function as Activators of Pre-mRNA Splicing. Molecular Cell, 1998, 1, 765-771.	9.7	179
30	Tempo and mode of regulatory evolution in <i>Drosophila</i> . Genome Research, 2014, 24, 797-808.	5.5	177
31	Genome-wide identification of zero nucleotide recursive splicing in Drosophila. Nature, 2015, 521, 376-379.	27.8	169
32	Analysis of the Human Neurexin Genes: Alternative Splicing and the Generation of Protein Diversity. Genomics, 2002, 79, 587-597.	2.9	164
33	A benchmark for RNA-seq quantification pipelines. Genome Biology, 2016, 17, 74.	8.8	160
34	A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. EMBO Journal, 1998, 17, 6747-6756.	7.8	148
35	Comparative validation of the <i>D. melanogaster</i> modENCODE transcriptome annotation. Genome Research, 2014, 24, 1209-1223.	5.5	147
36	Determining exon connectivity in complex mRNAs by nanopore sequencing. Genome Biology, 2015, 16, 204.	8.8	140

#	Article	IF	CITATIONS
37	Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins. Genome Biology, 2020, 21, 90.	8.8	136
38	The majority of transcripts in the squid nervous system are extensively recoded by A-to-I RNA editing. ELife, 2015, 4, .	6.0	124
39	Perspectives on ENCODE. Nature, 2020, 583, 693-698.	27.8	123
40	The role of U2AF35 and U2AF65 in enhancer-dependent splicing. Rna, 2001, 7, 806-818.	3.5	121
41	Resources for the Comprehensive Discovery of Functional RNA Elements. Molecular Cell, 2016, 61, 903-913.	9.7	118
42	microRNA-Seq reveals cocaine-regulated expression of striatal microRNAs. Rna, 2011, 17, 1529-1543.	3.5	113
43	The Genome of Anopheles darlingi , the main neotropical malaria vector. Nucleic Acids Research, 2013, 41, 7387-7400.	14.5	102
44	Alternative Splicing of the Drosophila <i>Dscam</i> Pre-mRNA Is Both Temporally and Spatially Regulated. Genetics, 2001, 159, 599-608.	2.9	100
45	Regulation of RNA editing by RNA-binding proteins in human cells. Communications Biology, 2019, 2, 19.	4.4	97
46	Global analysis of <i>trans</i> -splicing in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12975-12979.	7.1	92
47	A regulator of Dscam mutually exclusive splicing fidelity. Nature Structural and Molecular Biology, 2007, 14, 1134-1140.	8.2	90
48	RS domains contact the pre-mRNA throughout spliceosome assembly. Trends in Biochemical Sciences, 2005, 30, 115-118.	7.5	88
49	The organization and evolution of the Dipteran and Hymenopteran Down syndrome cell adhesion molecule (Dscam) genes. Rna, 2004, 10, 1499-1506.	3.5	87
50	Cas4 Nucleases Define the PAM, Length, and Orientation of DNA Fragments Integrated at CRISPR Loci. Molecular Cell, 2018, 70, 814-824.e6.	9.7	85
51	Probabilistic Splicing of Dscam1 Establishes Identity at the Level of Single Neurons. Cell, 2013, 155, 1166-1177.	28.9	84
52	Gene expression analysis of human induced pluripotent stem cell-derived neurons carrying copy number variants of chromosome 15q11-q13.1. Molecular Autism, 2014, 5, 44.	4.9	83
53	Exon-specific RNAi: A tool for dissecting the functional relevance of alternative splicing. Rna, 2002, 8, 718-724.	3.5	82
54	The origins and implications of Aluternative splicing. Trends in Genetics, 2004, 20, 1-4.	6.7	82

#	Article	IF	CITATIONS
55	The three major types of <scp>CRISPR</scp> â€ <scp>Cas</scp> systems function independently in <scp>CRISPR RNA</scp> biogenesis in <scp><i>S</i></scp> <i>treptococcus thermophilus</i> . Molecular Microbiology, 2014, 93, 98-112.	2.5	81
56	Regulation of alternative splicing in <i>Drosophila</i> by 56 RNA binding proteins. Genome Research, 2015, 25, 1771-1780.	5.5	77
57	Poison Exon Splicing Regulates a Coordinated Network of SR Protein Expression during Differentiation and Tumorigenesis. Molecular Cell, 2020, 80, 648-665.e9.	9.7	76
58	MicroRNAs from the Planarian Schmidtea mediterranea: A model system for stem cell biology. Rna, 2006, 12, 1640-1649.	3.5	71
59	Vex-seq: high-throughput identification of the impact of genetic variation on pre-mRNA splicing efficiency. Genome Biology, 2018, 19, 71.	8.8	66
60	RBP-Maps enables robust generation of splicing regulatory maps. Rna, 2019, 25, 193-204.	3.5	63
61	Power sequencing. Nature, 2008, 453, 1197-1198.	27.8	60
62	Competing RNA secondary structures are required for mutually exclusive splicing of the <i>Dscam</i> exon 6 cluster. Rna, 2011, 17, 222-229.	3.5	54
63	Effects of cocaine and withdrawal on the mouse nucleus accumbens transcriptome. Genes, Brain and Behavior, 2013, 12, 21-33.	2.2	49
64	The iStem, a Long-Range RNA Secondary Structure Element Required for Efficient Exon Inclusion in the Drosophila Dscam Pre-mRNA. Molecular and Cellular Biology, 2005, 25, 10251-10260.	2.3	48
65	Transcriptome Analysis Reveals Strain-Specific and Conserved Stemness Genes in Schmidtea mediterranea. PLoS ONE, 2012, 7, e34447.	2.5	48
66	Three CRISPR-Cas immune effector complexes coexist in <i>Pyrococcus furiosus</i> . Rna, 2015, 21, 1147-1158.	3.5	48
67	Structure and function of the PWI motif: a novel nucleic acid-binding domain that facilitates pre-mRNA processing. Genes and Development, 2003, 17, 461-475.	5.9	47
68	Deep sequencing identifies new and regulated microRNAs in Schmidtea mediterranea. Rna, 2009, 15, 1483-1491.	3.5	46
69	Sequencing and Structure Probing of Long RNAs Using MarathonRT: A Next-Generation Reverse Transcriptase. Journal of Molecular Biology, 2020, 432, 3338-3352.	4.2	46
70	SR proteins are †locators' of the RNA splicing machinery. Current Biology, 1999, 9, R6-R7.	3.9	44
71	Genomic Imprinting Absent in Drosophila melanogaster Adult Females. Cell Reports, 2012, 2, 69-75.	6.4	44
72	A computational and experimental approach toward a priori identification of alternatively spliced exons. Rna, 2004, 10, 1838-1844.	3.5	41

#	Article	IF	CITATIONS
73	Allele-specific binding of RNA-binding proteins reveals functional genetic variants in the RNA. Nature Communications, 2019, 10, 1338.	12.8	38
74	Characterization of U2AF 6 , a Splicing Factor Related to U2AF 35. Molecular and Cellular Biology, 2002, 22, 221-230.	2.3	37
75	Arginine/serine repeats are sufficient to constitute a splicing activation domain. Nucleic Acids Research, 2003, 31, 6502-6508.	14.5	36
76	Massive expansions of <i>Dscam</i> splicing diversity via staggered homologous recombination during arthropod evolution. Rna, 2010, 16, 91-105.	3.5	36
77	Molecular Mechanisms and Evolutionary Processes Contributing to Accelerated Divergence of Gene Expression on the <i>Drosophila</i> X Chromosome. Molecular Biology and Evolution, 2015, 32, 2605-2615.	8.9	35
78	The haplo-spliceo-transcriptome: common variations in alternative splicing in the human population. Trends in Genetics, 2008, 24, 5-7.	6.7	34
79	Programmable plasmid interference by the CRISPR-Cas system in <i><i>Thermococcus kodakarensis</i></i> . RNA Biology, 2013, 10, 828-840.	3.1	34
80	Evolution of splicing regulatory networks in <i>Drosophila</i> . Genome Research, 2014, 24, 786-796.	5.5	34
81	Role of free DNA ends and protospacer adjacent motifs for CRISPR DNA uptake in Pyrococcus furiosus. Nucleic Acids Research, 2017, 45, 11281-11294.	14.5	34
82	Complex Alternative Splicing. Advances in Experimental Medicine and Biology, 2007, 623, 50-63.	1.6	34
83	Identification of neoblast- and regeneration-specific miRNAs in the planarian <i>Schmidtea mediterranea</i> . Rna, 2013, 19, 1394-1404.	3.5	33
84	Enhancer-dependent 5′-Splice Site Control of fruitless Pre-mRNA Splicing. Journal of Biological Chemistry, 2003, 278, 22740-22747.	3.4	32
85	Sex, AGility, and the Regulation of Alternative Splicing. Cell, 2002, 109, 409-412.	28.9	31
86	Assessing long-distance RNA sequence connectivity via RNA-templated DNA–DNA ligation. ELife, 2015, 4,	6.0	29
87	Extensive cross-regulation of post-transcriptional regulatory networks in <i>Drosophila</i> . Genome Research, 2015, 25, 1692-1702.	5.5	24
88	RNA Matchmaking: Finding Cellular Pairing Partners. Molecular Cell, 2016, 63, 186-189.	9.7	24
89	Circuitous Route to Transcription Regulation. Molecular Cell, 2013, 51, 705-706.	9.7	23
90	Complete Genome Sequence of Industrial Dairy Strain Streptococcus thermophilus DGCC 7710. Genome Announcements, 2018, 6, .	0.8	22

6

#	Article	IF	CITATIONS
91	Alternative splicing: regulation without regulators. Nature Structural and Molecular Biology, 2009, 16, 13-15.	8.2	20
92	Primed CRISPR DNA uptake in Pyrococcus furiosus. Nucleic Acids Research, 2020, 48, 6120-6135.	14.5	20
93	CRISPRÂrepeat sequences and relative spacing specify DNA integration by Pyrococcus furiosus Cas1 and Cas2. Nucleic Acids Research, 2019, 47, 7518-7531.	14.5	18
94	Coordinated control of splicing and translation. Nature Structural and Molecular Biology, 2005, 12, 1022-1023.	8.2	17
95	Restoration of Both Structure and Function to a Defective Poly(A) Site by in Vitro Selection. Journal of Biological Chemistry, 1996, 271, 33654-33663.	3.4	16
96	CRISPR DNA elements controlling site-specific spacer integration and proper repeat length by a Type II CRISPR–Cas system. Nucleic Acids Research, 2019, 47, 8632-8648.	14.5	15
97	Use of RNA interference to dissect the roles of trans-acting factors in alternative pre-mRNA splicing. Methods, 2005, 37, 341-344.	3.8	13
98	New Insights from Existing Sequence Data: Generating Breakthroughs without a Pipette. Molecular Cell, 2013, 49, 605-617.	9.7	12
99	Loss of DNA Mismatch Repair Imparts a Selective Advantage in Planarian Adult Stem Cells. PLoS ONE, 2011, 6, e21808.	2.5	12
100	A Protein Interaction Domain Contacts RNA in the Prespliceosome. Molecular Cell, 2004, 13, 302-304.	9.7	11
101	Exon-Specific RNA Interference: A Tool to Determine the Functional Relevance of Proteins Encoded by Alternatively Spliced mRNAs. , 2005, 309, 273-282.		11
102	Splicing up Pluripotency. Cell, 2011, 147, 22-24.	28.9	11
103	Small molecule control of pre-mRNA splicing. Rna, 2005, 11, 355-358.	3.5	10
104	Transcriptome and in Vitro Differentiation Profile of Human Embryonic Stem Cell Derived NKX2.1-Positive Neural Progenitors. Stem Cell Reviews and Reports, 2016, 12, 744-756.	5.6	9
105	Unique properties of spacer acquisition by the type III-A CRISPR-Cas system. Nucleic Acids Research, 2022, 50, 1562-1582.	14.5	8
106	Direct tracking of reverse-transcriptase speed and template sensitivity: implications for sequencing and analysis of long RNA molecules. Nucleic Acids Research, 2022, 50, 6980-6989.	14.5	8
107	Splicing from the Outside In. Molecular Cell, 2007, 27, 861-862.	9.7	7
108	Type III-A CRISPR systems as a versatile gene knockdown technology. Rna, 2022, 28, 1074-1088.	3.5	7

#	Article	IF	CITATIONS
109	Sixty years of genome biology. Genome Biology, 2013, 14, 113.	9.6	6
110	Tips for Preparing mRNA-Seq Libraries from Poly(A) ⁺ mRNA for Illumina Transcriptome High-Throughput Sequencing. Cold Spring Harbor Protocols, 2013, 2013, pdb.ip073908.	0.3	1
111	Complete Genome Sequence of Streptococcus ratti JH145. Microbiology Resource Announcements, 2020, 9, .	0.6	1
112	Getting the Message Out. Molecular Cell, 2008, 31, 4-6.	9.7	0
113	Getting in the Loop: New Insights into the Mechanism of Poly(A) Site Recognition. Structure, 2011, 19, 279-281.	3.3	0
114	Musings on 20 years of <i>RNA</i> . Rna, 2015, 21, 506-507.	3.5	0
115	RNAs: dynamic and mutable. Genome Biology, 2017, 18, 226.	8.8	0
116	Alternative Splicing of Dscam. FASEB Journal, 2008, 22, 112.3.	0.5	0