Kevin M Mcpeak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3719985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Better colloidal lithography: Tilt-rotate evaporation overcomes the limits of plasma etching. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 043210.	2.1	1
2	Effect of annealing on the electronic structure of AuxPd1-x thin films on silicon: Diffusion of Si and silicide formation. Applied Surface Science, 2021, 537, 147810.	6.1	1
3	Printed Electrode for Measuring Phosphate in Environmental Water. ACS Omega, 2021, 6, 11297-11306.	3.5	5
4	Synthesis of luminescent core/shell α-Zn ₃ P ₂ /ZnS quantum dots. Nanoscale, 2020, 12, 20952-20964.	5.6	2
5	Role of Geometric Shape in Chiral Optics. Symmetry, 2020, 12, 158.	2.2	7
6	A Nobleâ€Transition Alloy Excels at Hotâ€Carrier Generation in the Near Infrared. Advanced Materials, 2020, 32, e1906478.	21.0	11
7	Critical Coupling of Visible Light Extends Hot-Electron Lifetimes for H ₂ O ₂ Synthesis. ACS Applied Materials & Interfaces, 2020, 12, 22778-22788.	8.0	6
8	Room-Temperature Strong Coupling of CdSe Nanoplatelets and Plasmonic Hole Arrays. Nano Letters, 2019, 19, 108-115.	9.1	23
9	Correlation of circular differential optical absorption with geometric chirality in plasmonic meta-atoms. Optics Express, 2019, 27, 5097.	3.4	13
10	Direct Patterning of Colloidal Quantum-Dot Thin Films for Enhanced and Spectrally Selective Out-Coupling of Emission. Nano Letters, 2017, 17, 1319-1325.	9.1	68
11	A customizable class of colloidal-quantum-dot metallic lasers and amplifiers. Science Advances, 2017, 3, e1700688.	10.3	50
12	Optical Chirality Flux as a Useful Far-Field Probe of Chiral Near Fields. ACS Photonics, 2016, 3, 1619-1625.	6.6	89
13	Plasmonic Films Can Easily Be Better: Rules and Recipes. ACS Photonics, 2015, 2, 326-333.	6.6	818
14	Low-temperature enhancement of plasmonic performance in silver films. Optical Materials Express, 2015, 5, 1147.	3.0	35
15	Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Charge‧elective Protein Detection. Advanced Materials, 2015, 27, 6244-6250.	21.0	63
16	Wedge Waveguides and Resonators for Quantum Plasmonics. Nano Letters, 2015, 15, 6267-6275.	9.1	107
17	Complex Chiral Colloids and Surfaces via High-Index Off-Cut Silicon. Nano Letters, 2014, 14, 2934-2940.	9.1	53
18	Fabrication of Smooth Patterned Structures of Refractory Metals, Semiconductors, and Oxides via Template Stripping. ACS Applied Materials & Interfaces, 2013, 5, 9701-9708.	8.0	27

Κένιν Μ Μαρεακ

#	Article	IF	CITATIONS
19	Microreactor Chemical Bath Deposition of Laterally Graded Cd _{1–<i>x</i>} Zn _{<i>x</i>} S Thin Films: A Route to High-Throughput Optimization for Photovoltaic Buffer Layers. Chemistry of Materials, 2013, 25, 297-306.	6.7	22
20	Chemical Bath Deposition of ZnO Nanowires at Near-Neutral pH Conditions without Hexamethylenetetramine (HMTA): Understanding the Role of HMTA in ZnO Nanowire Growth. Langmuir, 2011, 27, 3672-3677.	3.5	123
21	<i>In Situ</i> X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth During Chemical Bath Deposition. Chemistry of Materials, 2010, 22, 6162-6170.	6.7	57
22	ZnO Nanowires Grown by Chemical Bath Deposition in a Continuous Flow Microreactor. Crystal Growth and Design, 2009, 9, 4538-4545.	3.0	62
23	Microreactor for High-Yield Chemical Bath Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. Industrial & Engineering Chemistry Research, 2009, 48, 5954-5961.	3.7	33