
Aibing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3719261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-situ etching-activation towards carbon bowl-like hemispheres for energy storage. Carbon, 2022, 191, 67-74.	5.4	3
2	Reasonable Construction of Hollow Carbon Spheres with an Adjustable Shell Surface for Supercapacitors. ACS Applied Materials & amp; Interfaces, 2022, 14, 11750-11757.	4.0	27
3	CNT modified by mesoporous carbon anchored by Ni nanoparticles for CO ₂ electrochemical reduction. , 2022, 4, 1274-1284.		9
4	Unlocking the side reaction mechanism of phosphorus anode with binder and the development of a multifunctional binder for enhancing the performance. Journal of Power Sources, 2022, 541, 231686.	4.0	8
5	Nonsacrificial Nitrile Additive for Armoring Highâ€Voltage LiNi _{0.83} Co _{0.07} Mn _{0.1} O ₂ Cathode with Reliable Electrode–Electrolyte Interface toward Durable Battery. Small, 2022, 18, .	5.2	17
6	Nanocomposites of reduced graphene oxide modified with mesoporous carbon layers anchored by hollow carbon spheres for energy storage. Carbon, 2021, 173, 22-30.	5.4	18
7	ZIF-derived mesoporous carbon materials prepared by activation via Na2SiO3 for supercapacitor. Chinese Chemical Letters, 2021, 32, 1485-1490.	4.8	24
8	N/B-co-doped ordered mesoporous carbon spheres by ionothermal strategy for enhancing supercapacitor performance. Journal of Colloid and Interface Science, 2021, 587, 780-788.	5.0	42
9	Preparation of hollow mesoporous carbon spheres by pyrolysis-deposition using surfactant as carbon precursor. Journal of Power Sources, 2021, 484, 229274.	4.0	23
10	Tunable N-doped hollow carbon spheres induced by an ionic liquid for energy storage applications. Materials Chemistry Frontiers, 2021, 5, 843-850.	3.2	9
11	N-doped mesoporous carbon nanosheets for supercapacitors with high performance. Diamond and Related Materials, 2021, 111, 108206.	1.8	21
12	Solvent-free carbon self-deposition of non-polymeric resin-based precursor toward N-doped porous carbon. Surface and Coatings Technology, 2021, 406, 126679.	2.2	2
13	Monomer self-deposition synthesis of N-doped mesoporous carbon tubes using halloysite as template for supercapacitors. Journal of Materials Science, 2021, 56, 3312-3324.	1.7	9
14	Core–Shell Structure of a Polypyrrole-Coated Phosphorus/Carbon Nanotube Anode for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 4112-4118.	2.5	25
15	Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors. Frontiers of Chemical Science and Engineering, 2021, 15, 1312-1321.	2.3	6
16	Silicaâ€Confined Activation for Biomassâ€Derived Porous Carbon Materials for Highâ€Performance Supercapacitors. ChemElectroChem, 2021, 8, 2028-2033.	1.7	5
17	Unlocking the dissolution mechanism of phosphorus anode for lithium-ion batteries. Energy Storage Materials, 2021, 37, 417-423.	9.5	36
18	N-doped mesoporous thin carbon tubes obtained by exhaust directional deposition for supercapacitor. Chemical Engineering Science, 2021, 240, 116651.	1.9	19

#	Article	IF	CITATIONS
19	Yeasts-derived nitrogen-doped porous carbon microcapsule prepared by silica-confined activation for supercapacitor. Journal of Colloid and Interface Science, 2021, 601, 467-473.	5.0	36
20	Suppressing interlayer-gliding and Jahn-Teller effect in P2-type layered manganese oxide cathode via Mo doping for sodium-ion batteries. Chemical Engineering Journal, 2021, 426, 130813.	6.6	16
21	Glycolide additives enrich organic components in the solid electrolyte interphase enabling stable ultrathin lithium metal anodes. Materials Chemistry Frontiers, 2021, 5, 2791-2797.	3.2	21
22	Silica-Assisted Controlled Engineering of Nitrogen-Doped Carbon Cages with Bulges for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 60327-60336.	4.0	9
23	N-doped hollow mesoporous carbon spheres by improved dissolution-capture for supercapacitors. Carbon, 2020, 156, 523-528.	5.4	118
24	Mesoporous carbon materials with different morphology for pesticide adsorption. Applied Nanoscience (Switzerland), 2020, 10, 151-157.	1.6	7
25	N-doped hollow mesoporous carbon spheres prepared by polybenzoxazines precursor for energy storage. Carbon, 2020, 160, 265-272.	5.4	61
26	Co-assembly strategy for uniform and tunable hollow carbon spheres with supercapacitor application. Journal of Colloid and Interface Science, 2020, 565, 245-253.	5.0	30
27	Synthesis of mesoporous carbon with tunable pore size for supercapacitors. New Journal of Chemistry, 2020, 44, 1036-1044.	1.4	29
28	Crosstalk shielding of transition metal ions for long cycling lithium–metal batteries. Journal of Materials Chemistry A, 2020, 8, 4283-4289.	5.2	51
29	The origin of sulfuryl-containing components in SEI from sulfate additives for stable cycling of ultrathin lithium metal anodes. Journal of Energy Chemistry, 2020, 47, 128-131.	7.1	63
30	N-doped porous carbon nanotubes derived from polypyrrole for supercapacitors with high performance. Journal of Analytical and Applied Pyrolysis, 2020, 152, 104925.	2.6	16
31	Preparation of an N-doped mesoporous carbon sphere and sheet composite as a high-performance supercapacitor. Journal of Chemical Research, 2020, , 174751982093989.	0.6	1
32	Construction of Dualâ€Mesoporous Carbon Fibers Via Coassembly for Supercapacitors. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000365.	0.8	2
33	Synthesis of nitrogen-doped porous carbon by solid grinding for supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 21478-21485.	1.1	1
34	A layered-nanospace-confinement strategy for the synthesis of two-dimensional tin/carbon anode for Li-/Na-ion batteries. Materials Letters, 2020, 273, 127909.	1.3	6
35	Nitrogen-enriched hierarchically porous carbon sheets anchored with ZIF-derived carbon for supercapacitors. Applied Surface Science, 2020, 527, 146845.	3.1	32
36	Ionic liquid-induced tunable N-doped mesoporous carbon spheres for supercapacitors. Inorganic Chemistry Frontiers, 2020, 7, 2548-2555.	3.0	6

#	Article	IF	CITATIONS
37	Acetone dissolution to prepare N-doped hierarchical porous carbon for supercapacitor. Diamond and Related Materials, 2020, 108, 107985.	1.8	12
38	Porous yolk–shell-structured carbon nanospheres for electrochemical energy storage. Journal of Materials Science: Materials in Electronics, 2020, 31, 13321-13329.	1.1	2
39	A Review on Applications of Layered Phosphorus in Energy Storage. Transactions of Tianjin University, 2020, 26, 104-126.	3.3	43
40	K ₂ Ti ₆ O ₁₃ /carbon core–shell nanorods as a superior anode material for high-rate potassium-ion batteries. Nanoscale, 2020, 12, 11427-11434.	2.8	14
41	Nitrogen and oxygen co-doped ordered dual-mesoporous carbon for supercapacitors. Journal of Alloys and Compounds, 2019, 805, 859-867.	2.8	14
42	Confined pyrolysis for direct conversion of solid resin spheres into yolk–shell carbon spheres for supercapacitor. Journal of Materials Chemistry A, 2019, 7, 1038-1044.	5.2	56
43	Synthesis of n-doped mesoporous carbon by silica assistance as electrode for supercapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 3214-3221.	1.1	14
44	Synthesis of nitrogen-doped mesoporous carbon for high-performance supercapacitors. New Journal of Chemistry, 2019, 43, 2776-2782.	1.4	17
45	Synthesis of rich fluffy porous carbon spheres by dissolution–reassembly method for supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 3316-3324.	1.1	4
46	Hollow carbon spheres/hollow carbon nanorods composites as electrode materials for supercapacitor. Journal of the Taiwan Institute of Chemical Engineers, 2019, 101, 244-250.	2.7	15
47	Mesoporous carbon sheets embedded with vesicles for enhanced supercapacitor performance. Journal of Materials Chemistry A, 2019, 7, 15707-15713.	5.2	26
48	Confined-Space Pyrolysis of Polystyrene/Polyacrylonitrile for Nitrogen-Doped Hollow Mesoporous Carbon Spheres with High Supercapacitor Performance. ACS Applied Energy Materials, 2019, 2, 4402-4410.	2.5	27
49	N-doped ordered mesoporous carbon spheres derived by confined pyrolysis for high supercapacitor performance. Journal of Materials Science and Technology, 2019, 35, 2178-2186.	5.6	53
50	Hollow mesoporous carbon cages by pyrolysis of waste polyethylene for supercapacitors. New Journal of Chemistry, 2019, 43, 10899-10905.	1.4	10
51	Interpolation strategy for monodisperse hollow mesoporous carbon spheres in high performance supercapacitor. Journal of Power Sources, 2019, 434, 226720.	4.0	21
52	"Dissolution-reassembly―for N-doped hollow micro/meso-carbon spheres with high supercapacitor performance. Chinese Chemical Letters, 2019, 30, 1423-1427.	4.8	15
53	Synthesis of nitrogen-doped carbon spheres using the modified Stöber method for supercapacitors. Frontiers of Materials Science, 2019, 13, 156-164.	1.1	6
54	N-doping carbon sheet and core–shell mesoporous carbon sphere composite for high-performance supercapacitor. Journal of Industrial and Engineering Chemistry, 2019, 76, 450-456.	2.9	15

#	Article	IF	CITATIONS
55	Monomer Selfâ€Deposition for Ordered Mesoporous Carbon for Highâ€Performance Supercapacitors. ChemSusChem, 2019, 12, 2409-2414.	3.6	13
56	All arbon Electrode Directly Derived from Wax Gourd for Supercapacitor. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800798.	0.8	4
57	Conversion of waste plastic into ordered mesoporous carbon for electrochemical applications. Journal of Materials Research, 2019, 34, 941-949.	1.2	12
58	A confined space pyrolysis strategy for controlling the structure of hollow mesoporous carbon spheres with high supercapacitor performance. Nanoscale, 2019, 11, 4453-4462.	2.8	33
59	N-Doped yolk–shell carbon nanotube composite for enhanced electrochemical performance in a supercapacitor. Nanoscale, 2019, 11, 22796-22803.	2.8	28
60	Nitrogen-Doped Hollow Mesoporous Carbon Tube for Supercapacitors Application. Journal of the Electrochemical Society, 2019, 166, A4047-A4055.	1.3	5
61	Tuning Confined Nanospace for Preparation of Nâ€doped Hollow Carbon Spheres for High Performance Supercapacitors. ChemSusChem, 2019, 12, 303-309.	3.6	39
62	Encapsulation pyrolysis synchronous deposition for hollow carbon sphere with tunable textural properties. Carbon, 2019, 143, 467-474.	5.4	23
63	Carbon Nanotube@Nâ€Doped Mesoporous Carbon Composite Material for Supercapacitor Electrodes. Chemistry - an Asian Journal, 2019, 14, 634-639.	1.7	31
64	Template-free method for fabricating carbon nanotube combined with thin N-doped porous carbon composite for supercapacitor. Journal of Materials Science, 2019, 54, 6451-6460.	1.7	25
65	Controlling the Inner Structure of Carbon Spheres via "Protective-Dissolution―Strategy for Supercapacitor. Journal of Physical Chemistry C, 2019, 123, 2801-2807.	1.5	14
66	Synthesis of nitrogen doped graphene aerogels using solid supported strategy for supercapacitor. Materials Chemistry and Physics, 2019, 223, 145-151.	2.0	30
67	Controllable synthesis of N-doped hollow, yolk-shell and solid carbon spheres via template-free method. Journal of Alloys and Compounds, 2019, 778, 294-301.	2.8	21
68	Synthesis of Nitrogenâ€Doped Porous Carbon Monolith for Binderâ€Free Allâ€Carbon Supercapacitors. ChemElectroChem, 2019, 6, 535-542.	1.7	24
69	Raw-Cotton-Derived N-Doped Carbon Fiber Aerogel as an Efficient Electrode for Electrochemical Capacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 4008-4015.	3.2	108
70	Tailoring the structures and photonic properties of low-dimensional organic materials by crystal engineering. Nanoscale, 2018, 10, 4680-4685.	2.8	18
71	Nitrogen-doping hierarchically porous carbon nanosheets for supercapacitor. Journal of Materials Science: Materials in Electronics, 2018, 29, 5363-5372.	1.1	15
72	Cauliflower-derived porous carbon without activation for electrochemical capacitor and CO2 capture applications. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	11

#	Article	IF	CITATIONS
73	Fabrication of hierarchical porous N-doping carbon membrane by using "confined nanospace deposition―method for supercapacitor. Applied Surface Science, 2018, 435, 424-431.	3.1	13
74	Fabrication of monodisperse hollow mesoporous carbon spheres by using "confined nanospace deposition―method for supercapacitor. Journal of Alloys and Compounds, 2018, 736, 35-41.	2.8	22
75	N-Doped Mesoporous Carbon Sheets/Hollow Carbon Spheres Composite for Supercapacitors. Langmuir, 2018, 34, 15665-15673.	1.6	24
76	N-Doped Hollow Carbon Spheres/Sheets Composite for Electrochemical Capacitor. ACS Applied Materials & Interfaces, 2018, 10, 40062-40069.	4.0	48
77	Synthesis of mesoporous tubular carbon using natural tubular Halloysite as template for supercapacitor. Journal of Materials Science: Materials in Electronics, 2018, 29, 12187-12194.	1.1	9
78	Luminogen-functionalized mesoporous SBA-15 for fluorescent detection of antibiotic cefalexin. Journal of Materials Research, 2018, 33, 1442-1448.	1.2	4
79	Order Mesoporous Carbon Spheres with Precise Tunable Large Pore Size by Encapsulated Selfâ€Activation Strategy. Advanced Functional Materials, 2018, 28, 1802332.	7.8	91
80	PVP-assisted synthesis of nitrogen-doped hollow carbon spheres for supercapacitors. Journal of Alloys and Compounds, 2018, 768, 42-48.	2.8	38
81	N-doped ordered mesoporous carbon prepared by solid–solid grinding for supercapacitors. Journal of Materials Research, 2018, 33, 3408-3417.	1.2	11
82	Synthesis of Three-Dimensional Hierarchically Porous Carbon Monolith via "Pyrolysis-Capture― Strategy for Supercapacitors. Journal of the Electrochemical Society, 2018, 165, A2415-A2420.	1.3	6
83	Porous carbon derived from waste polystyrene foam for supercapacitor. Journal of Materials Science, 2018, 53, 12115-12122.	1.7	44
84	Sea urchin-like core/shell hierarchical porous carbon for supercapacitors. Journal of Alloys and Compounds, 2017, 719, 438-445.	2.8	19
85	Synthesis of mesoporous carbon nanospheres via "pyrolysis-deposition―strategy for CO2 capture. Journal of Materials Science, 2017, 52, 9640-9647.	1.7	13
86	Hierarchical porous nitrogen-doped partial graphitized carbon monoliths for supercapacitor. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	13
87	Synthesis of hollow mesoporous carbon spheres via Friedel-Crafts reaction strategy for supercapacitor. Materials Letters, 2017, 197, 71-74.	1.3	29
88	Synthesis and characterization of nitrogen-doped graphene hollow spheres as electrode material for supercapacitors. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	17
89	Fe modified mesoporous hollow carbon spheres for selective oxidation of ethylbenzene. Science China Materials, 2017, 60, 1227-1233.	3.5	14
90	Silica-Assisted Assembly for Synthesis of Nitrogen-Doped Hollow Mesoporous Carbon Spheres as Supercapacitors. Journal of the Electrochemical Society, 2017, 164, A1918-A1923.	1.3	15

#	Article	IF	CITATIONS
91	Controllable synthesis of nitrogen-doped hollow mesoporous carbon spheres using ionic liquids as template for supercapacitors. Applied Surface Science, 2017, 393, 151-158.	3.1	62
92	Waste chrysanthemum tea derived hierarchically porous carbon for CO2 capture. Journal of Renewable and Sustainable Energy, 2017, 9, 064901.	0.8	10
93	Self-catalyzed strategy to form hollow carbon nanospheres for CO2 capture. Materials Letters, 2016, 185, 63-66.	1.3	18
94	Fabrication of Nitrogen-Doped Hollow Mesoporous Spherical Carbon Capsules for Supercapacitors. Langmuir, 2016, 32, 8934-8941.	1.6	57
95	Nitrogen-doped hollow carbon spheres for supercapacitors application. Journal of Alloys and Compounds, 2016, 688, 878-884.	2.8	44
96	Synthesis of Nitrogen-Doped Micro-Mesoporous Carbon for Supercapacitors. Journal of the Electrochemical Society, 2016, 163, A1959-A1964.	1.3	18
97	"Dissolution-Capture―Strategy to Form Monodispersed Nitrogen-Doped Hollow Mesoporous Carbon Spheres. Journal of the Electrochemical Society, 2016, 163, A3063-A3068.	1.3	10
98	Solid-state grinding synthesis of ordered mesoporous MgO/carbon spheres composites for CO 2 capture. Materials Letters, 2016, 164, 520-523.	1.3	20
99	Synthesis of hollow mesoporous carbon spheres via "dissolution-capture―method for effective phenol adsorption. Carbon, 2016, 103, 157-162.	5.4	74
100	Nitrogen-doped dual mesoporous carbon for the selective oxidation of ethylbenzene. Nanoscale, 2015, 7, 14684-14690.	2.8	56
101	Solid–solid grinding/templating route to magnetically separable nitrogen-doped mesoporous carbon for the removal of Cu2+ ions. Journal of Hazardous Materials, 2014, 279, 280-288.	6.5	22
102	Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors. Journal of Materials Chemistry A, 2013, 1, 1045-1047.	5.2	100