Jay C Jha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3719148/publications.pdf

Version: 2024-02-01

687363 1058476 1,577 14 13 14 h-index citations g-index papers 14 14 14 2323 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Independent of Renox, NOX5 Promotes Renal Inflammation and Fibrosis in Diabetes by Activating ROS-Sensitive Pathways. Diabetes, 2022, 71, 1282-1298.	0.6	14
2	Oxidative Stress and Inflammation in Renal and Cardiovascular Complications of Diabetes. Biology, 2021, 10, 18.	2.8	73
3	Dyslipidemia, Diabetes and Atherosclerosis: Role of Inflammation and ROS-Redox-Sensitive Factors. Biomedicines, 2021, 9, 1602.	3.2	33
4	Nox (NADPH Oxidase) 1, Nox4, and Nox5 Promote Vascular Permeability and Neovascularization in Retinopathy. Hypertension, 2020, 75, 1091-1101.	2.7	42
5	NADPH Oxidase Inhibition: Preclinical and Clinical Studies in Diabetic Complications. Antioxidants and Redox Signaling, 2020, 33, 415-434.	5.4	41
6	Endothelial or vascular smooth muscle cell-specific expression of human NOX5 exacerbates renal inflammation, fibrosis and albuminuria in the Akita mouse. Diabetologia, 2019, 62, 1712-1726.	6.3	27
7	Combined NOX1/4 inhibition with GKT137831 in mice provides dose-dependent reno- and atheroprotection even in established micro- and macrovascular disease. Diabetologia, 2017, 60, 927-937.	6.3	85
8	NADPH Oxidase Nox5 Accelerates Renal Injury in Diabetic Nephropathy. Diabetes, 2017, 66, 2691-2703.	0.6	119
9	Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxidants and Redox Signaling, 2016, 25, 657-684.	5.4	410
10	Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy. Diabetologia, 2016, 59, 379-389.	6.3	114
11	<i>miR-21</i> promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clinical Science, 2015, 129, 1237-1249.	4.3	192
12	Nox-4 deletion reduces oxidative stress and injury by PKC- $\langle i \rangle \hat{l} \pm \langle i \rangle$ -associated mechanisms in diabetic nephropathy. Physiological Reports, 2014, 2, e12192.	1.7	88
13	Genetic Targeting or Pharmacologic Inhibition of NADPH Oxidase Nox4 Provides Renoprotection in Long-Term Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2014, 25, 1237-1254.	6.1	301
14	New Insights Into the Use of Biomarkers of Diabetic Nephropathy. Advances in Chronic Kidney Disease, 2014, 21, 318-326.	1.4	38