

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3718935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Largeâ€scale plasma proteomic profiling identifies a highâ€performance biomarker panel for Alzheimer's disease screening and staging. Alzheimer's and Dementia, 2022, 18, 88-102.	0.4	65
2	Instructive roles of astrocytes in hippocampal synaptic plasticity: neuronal activityâ€dependent regulatory mechanisms. FEBS Journal, 2022, 289, 2202-2218.	2.2	30
3	Brain-wide Cas9-mediated cleavage of a gene causing familial Alzheimer's disease alleviates amyloid-related pathologies in mice. Nature Biomedical Engineering, 2022, 6, 168-180.	11.6	27
4	AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nature Neuroscience, 2022, 25, 106-115.	7.1	162
5	Association of SPI1 Haplotypes with Altered SPI1 Gene Expression and Alzheimer's Disease Risk. Journal of Alzheimer's Disease, 2022, 86, 1861-1873.	1.2	10
6	Demographics and Medication Use of Patients with Late-Onset Alzheimer's Disease in Hong Kong. Journal of Alzheimer's Disease, 2022, 87, 1205-1213.	1.2	3
7	Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping. Nature Biotechnology, 2022, 40, 1663-1671.	9.4	32
8	Melanocortin receptor activation alleviates amyloid pathology and glial reactivity in an Alzheimer's disease transgenic mouse model. Scientific Reports, 2021, 11, 4359.	1.6	10
9	Efficient manipulation of gene dosage in human iPSCs using CRISPR/Cas9 nickases. Communications Biology, 2021, 4, 195.	2.0	6
10	Polygenic Score Models for Alzheimer's Disease: From Research to Clinical Applications. Frontiers in Neuroscience, 2021, 15, 650220.	1.4	23
11	Quantitative in vivo assessment of amyloid-beta phagocytic capacity in an Alzheimer's disease mouse model. STAR Protocols, 2021, 2, 100265.	0.5	9
12	Cytokine signaling convergence regulates the microglial state transition in Alzheimer's disease. Cellular and Molecular Life Sciences, 2021, 78, 4703-4712.	2.4	23
13	GSAP regulates lipid homeostasis and mitochondrial function associated with Alzheimer's disease. Journal of Experimental Medicine, 2021, 218, .	4.2	14
14	High-resolution two-photon transcranial imaging of brain using direct wavefront sensing. Photonics Research, 2021, 9, 1144.	3.4	9
15	APOE signaling in neurodegenerative diseases: an integrative approach targeting APOE coding and noncoding variants for disease intervention. Current Opinion in Neurobiology, 2021, 69, 58-67.	2.0	14
16	IL-33/ST2 Signaling Regulates Synaptic Plasticity and Homeostasis in the Adult Hippocampal Circuitry. DNA and Cell Biology, 2021, 40, 1125-1130.	0.9	4
17	A tacrine-tetrahydroquinoline heterodimer potently inhibits acetylcholinesterase activity and enhances neurotransmission in mice. European Journal of Medicinal Chemistry, 2021, 226, 113827.	2.6	3
18	Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	53

#	Article	IF	CITATIONS
19	Rhynchophylline Administration Ameliorates Amyloid-β Pathology and Inflammation in an Alzheimer's Disease Transgenic Mouse Model. ACS Chemical Neuroscience, 2021, 12, 4249-4256.	1.7	11
20	A near-infrared AIE fluorescent probe for myelin imaging: From sciatic nerve to the optically cleared brain tissue in 3D. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
21	A highâ€performance biomarker panel for Alzheimer's disease screening and staging identified by largeâ€scale plasma proteomic profiling. Alzheimer's and Dementia, 2021, 17, .	0.4	4
22	Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25800-25809.	3.3	238
23	Genetic and polygenic risk score analysis for Alzheimer's disease in the Chinese population. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12074.	1.2	14
24	p39-associated Cdk5 activity regulates dendritic morphogenesis. Scientific Reports, 2020, 10, 18746.	1.6	9
25	A Pentacyclic Triterpene from <i>Ligustrum lucidum</i> Targets Î ³ -Secretase. ACS Chemical Neuroscience, 2020, 11, 2827-2835.	1.7	4
26	Evaluation of genetic risk for Alzheimer's disease in the Hong Kong Chinese population. Alzheimer's and Dementia, 2020, 16, e045142.	0.4	0
27	IL-33-PU.1 Transcriptome Reprogramming Drives Functional State Transition and Clearance Activity of Microglia in Alzheimer's Disease. Cell Reports, 2020, 31, 107530.	2.9	65
28	Adaptive optics two-photon endomicroscopy enables deep-brain imaging at synaptic resolution over large volumes. Science Advances, 2020, 6, .	4.7	36
29	Changes of Protein Phosphorylation Are Associated with Synaptic Functions during the Early Stage of Alzheimer's Disease. ACS Chemical Neuroscience, 2019, 10, 3986-3996.	1.7	14
30	Asymmetric Total Syntheses of Rhynchophylline and Isorhynchophylline. Journal of Organic Chemistry, 2019, 84, 11359-11365.	1.7	25
31	Non-coding variability at the APOE locus contributes to the Alzheimer's risk. Nature Communications, 2019, 10, 3310.	5.8	91
32	α2-Chimaerin is essential for neural stem cell homeostasis in mouse adult neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13651-13660.	3.3	9
33	Increased Axin expression enhances adult hippocampal neurogenesis and exerts an antidepressant effect. Scientific Reports, 2019, 9, 1190.	1.6	7
34	Targeting Neuroinflammation as a Therapeutic Strategy for Alzheimer's Disease: Mechanisms, Drug Candidates, and New Opportunities. ACS Chemical Neuroscience, 2019, 10, 872-879.	1.7	90
35	Synaptic dysfunction in Alzheimer's disease: Mechanisms and therapeutic strategies. , 2019, 195, 186-198.		141
36	Identification of genetic risk factors in the Chinese population implicates a role of immune system in Alzheimer's disease pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1697-1706.	3.3	71

#	Article	IF	CITATIONS
37	Methods to Study the Signal Transduction of the Surface Receptor Tyrosine Kinase TrkB in Neurons. Methods in Molecular Biology, 2018, 1722, 211-222.	0.4	1
38	Finding success by following your heart. Nature Cell Biology, 2018, 20, 1003-1003.	4.6	0
39	In Vivo Near-Infrared Two-Photon Imaging of Amyloid Plaques in Deep Brain of Alzheimer's Disease Mouse Model. ACS Chemical Neuroscience, 2018, 9, 3128-3136.	1.7	50
40	Identification of new EphA4 inhibitors by virtual screening of FDA-approved drugs. Scientific Reports, 2018, 8, 7377.	1.6	21
41	Dopamine receptors mediate strategy abandoning via modulation of a specific prelimbic cortex–nucleus accumbens pathway in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4890-E4899.	3.3	23
42	Eph Receptor. , 2018, , 1565-1573.		0
43	A Molecular Switch Regulating Cell Fate Choice between Muscle Progenitor Cells and Brown Adipocytes. Developmental Cell, 2017, 41, 382-391.e5.	3.1	48
44	Regulation of postsynaptic signaling in structural synaptic plasticity. Current Opinion in Neurobiology, 2017, 45, 148-155.	2.0	38
45	Cdk5-dependent phosphorylation of liprinα1 mediates neuronal activity-dependent synapse development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6992-E7001.	3.3	45
46	Homeostatic Scaling of AMPA Receptors by Semaphorin. Neuron, 2017, 96, 955-958.	3.8	3
47	Diarylheptanoids from Rhizomes of <i>Alpinia officinarum</i> Inhibit Aggregation of α-Synuclein. Journal of Agricultural and Food Chemistry, 2017, 65, 6608-6614.	2.4	11
48	Anemoside A3 ameliorates experimental autoimmune encephalomyelitis by modulating T helper 17 cell response. PLoS ONE, 2017, 12, e0182069.	1.1	15
49	Stimulation of the Hippocampal POMC/MC4R Circuit Alleviates Synaptic Plasticity Impairment in an Alzheimer's Disease Model. Cell Reports, 2016, 17, 1819-1831.	2.9	43
50	IL-33 ameliorates Alzheimer's disease-like pathology and cognitive decline. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2705-13.	3.3	247
51	Design and Synthesis of Dimeric Securinine Analogues with Neuritogenic Activities. ACS Chemical Neuroscience, 2016, 7, 1442-1451.	1.7	20
52	STAT3 Regulates Self-Renewal of Adult Muscle Satellite Cells during Injury-Induced Muscle Regeneration. Cell Reports, 2016, 16, 2102-2115.	2.9	50
53	The pseudokinase CaMKv is required for the activity-dependent maintenance of dendritic spines. Nature Communications, 2016, 7, 13282.	5.8	42
54	China Brain Project: Basic Neuroscience, Brain Diseases, and Brain-Inspired Computing. Neuron, 2016, 92, 591-596.	3.8	207

#	Article	IF	CITATIONS
55	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
56	New lignans with neuroprotective activity from Adelostemma gracillimum. Phytochemistry Letters, 2016, 16, 1-7.	0.6	7
57	Highly <i>trans</i> ‣elective Arylation of Achmatowicz Rearrangement Products by Reductive γâ€Deoxygenation and Heck–Matsuda Reaction: Asymmetric Total Synthesis of (â^)â€Musellarinsâ€A–C a Their Analogues. Chemistry - A European Journal, 2015, 21, 11152-11157.	n d. 7	36
58	Emerging roles of Axin in cerebral cortical development. Frontiers in Cellular Neuroscience, 2015, 9, 217.	1.8	15
59	Editorial: Cell and molecular signaling, and transport pathways involved in growth factor control of synaptic development and function. Frontiers in Synaptic Neuroscience, 2015, 7, 8.	1.3	1
60	Anemoside A3 Enhances Cognition through the Regulation of Synaptic Function and Neuroprotection. Neuropsychopharmacology, 2015, 40, 1877-1887.	2.8	23
61	Neddylation is needed for synapse maturation. Nature Neuroscience, 2015, 18, 164-166.	7.1	3
62	Plant alkaloids as drug leads for Alzheimer's disease. Neurochemistry International, 2015, 89, 260-270.	1.9	165
63	Cyclin-dependent Kinase 5 (Cdk5)-dependent Phosphorylation of p70 Ribosomal S6 Kinase 1 (S6K) Is Required for Dendritic Spine Morphogenesis. Journal of Biological Chemistry, 2015, 290, 14637-14646.	1.6	26
64	S-nitrosylation-dependent proteasomal degradation restrains Cdk5 activity to regulate hippocampal synaptic strength. Nature Communications, 2015, 6, 8665.	5.8	31
65	Ningpoensines A–C: unusual zwitterionic alkaloids from Scrophularia ningpoensis. Tetrahedron Letters, 2015, 56, 5453-5456.	0.7	10
66	Cdk5 Regulates Activity-Dependent Gene Expression and Dendrite Development. Journal of Neuroscience, 2015, 35, 15127-15134.	1.7	29
67	Injured adult retinal axons with Pten and Socs3 co-deletion reform active synapses with suprachiasmatic neurons. Neurobiology of Disease, 2015, 73, 366-376.	2.1	46
68	Axin Regulates Dendritic Spine Morphogenesis through Cdc42-Dependent Signaling. PLoS ONE, 2015, 10, e0133115.	1.1	20
69	Coronin 6 Regulates Acetylcholine Receptor Clustering through Modulating Receptor Anchorage to Actin Cytoskeleton. Journal of Neuroscience, 2014, 34, 2413-2421.	1.7	36
70	Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9959-9964.	3.3	162
71	Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex. Nature Communications, 2014, 5, 4826.	5.8	68
72	Cdk5-Dependent Mst3 Phosphorylation and Activity Regulate Neuronal Migration through RhoA Inhibition. Journal of Neuroscience, 2014, 34, 7425-7436.	1.7	56

#	Article	IF	CITATIONS
73	Overproduction of Upper-Layer Neurons in the Neocortex Leads to Autism-like Features in Mice. Cell Reports, 2014, 9, 1635-1643.	2.9	96
74	Cycloastragenol Is a Potent Telomerase Activator in Neuronal Cells: Implications for Depression Management. NeuroSignals, 2014, 22, 52-63.	0.5	58
75	CRMP2. Neuroscientist, 2014, 20, 589-598.	2.6	70
76	p35 Regulates the CRM1-Dependent Nucleocytoplasmic Shuttling of Nuclear Hormone Receptor Coregulator-Interacting Factor 1 (NIF-1). PLoS ONE, 2014, 9, e110584.	1.1	3
77	Axin: An emerging key scaffold at the synapse. IUBMB Life, 2013, 65, 685-691.	1.5	16
78	Structural plasticity of dendritic spines: The underlying mechanisms and its dysregulation in brain disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2257-2263.	1.8	153
79	Design, synthesis and evaluation of novel heterodimers of donepezil and huperzine fragments as acetylcholinesterase inhibitors. Bioorganic and Medicinal Chemistry, 2013, 21, 676-683.	1.4	26
80	Melanocortin-4 Receptor Regulates Hippocampal Synaptic Plasticity through a Protein Kinase A-Dependent Mechanism. Journal of Neuroscience, 2013, 33, 464-472.	1.7	67
81	Cdk5 Phosphorylates a Component of the HDAC Complex and Regulates Histone Acetylation during Neuronal Cell Death. NeuroSignals, 2013, 21, 55-60.	0.5	8
82	The Atypical Guanine Nucleotide Exchange Factor Dock4 Regulates Neurite Differentiation through Modulation of Rac1 GTPase and Actin Dynamics. Journal of Biological Chemistry, 2013, 288, 20034-20045.	1.6	67
83	Olean-12-Eno[2,3-c] [1,2,5]Oxadiazol-28-Oic Acid (OEOA) Induces G1 Cell Cycle Arrest and Differentiation in Human Leukemia Cell Lines. PLoS ONE, 2013, 8, e63580.	1.1	18
84	Astragaloside IV and Cycloastragenol Stimulate the Phosphorylation of Extracellular Signal-Regulated Protein Kinase in Multiple Cell Types. Planta Medica, 2012, 78, 115-121.	0.7	43
85	Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends in Neurosciences, 2012, 35, 441-453.	4.2	123
86	Ankyrin Repeat-Rich Membrane Spanning Protein (Kidins220) Is Required for Neurotrophin and Ephrin Receptor-Dependent Dendrite Development. Journal of Neuroscience, 2012, 32, 8263-8269.	1.7	18
87	TrkB phosphorylation by Cdk5 is required for activity-dependent structural plasticity and spatial memory. Nature Neuroscience, 2012, 15, 1506-1515.	7.1	144
88	α2-chimaerin controls neuronal migration and functioning of the cerebral cortex through CRMP-2. Nature Neuroscience, 2012, 15, 39-47.	7.1	77
89	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
90	Cyclin-Dependent Kinase 5 in Axon Growth and Regeneration. International Review of Neurobiology, 2012, 105, 91-115.	0.9	13

#	Article	IF	CITATIONS
91	Eph receptors at synapses: Implications in neurodegenerative diseases. Cellular Signalling, 2012, 24, 606-611.	1.7	69
92	Dual actions of brain-derived neurotrophic factor on GABAergic transmission in cerebellar Purkinje neurons. Experimental Neurology, 2012, 233, 791-798.	2.0	34
93	Cdk5: a multifaceted kinase in neurodegenerative diseases. Trends in Cell Biology, 2012, 22, 169-175.	3.6	208
94	Natural products targeting telomere maintenance. MedChemComm, 2011, 2, 229.	3.5	37
95	A new carotenoid glycoside from Rehmannia glutinosa. Natural Product Research, 2011, 25, 1213-1218.	1.0	14
96	Molecular machinery of macroautophagy and its deregulation in diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1490-1497.	1.8	63
97	Career Development for Women Scientists in Asia. Neuron, 2011, 70, 1029-1032.	3.8	7
98	From understanding synaptic plasticity to the development of cognitive enhancers. International Journal of Neuropsychopharmacology, 2011, 14, 1247-1256.	1.0	13
99	Autophagy deregulation in neurodegenerative diseases – recent advances and future perspectives. Journal of Neurochemistry, 2011, 118, 317-325.	2.1	109
100	Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson's disease. Nature Cell Biology, 2011, 13, 568-579.	4.6	139
101	APCCdh1 mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity. Nature Neuroscience, 2011, 14, 181-189.	7.1	164
102	Intestinal transport of bis(12)â€hupyridone in Cacoâ€2 cells and its improved permeability by the surfactant Brijâ€35. Biopharmaceutics and Drug Disposition, 2011, 32, 140-150.	1.1	26
103	Cdk5-Mediated Phosphorylation of Axin Directs Axon Formation during Cerebral Cortex Development. Journal of Neuroscience, 2011, 31, 13613-13624.	1.7	67
104	Trophic factors: 50 years of growth. Developmental Neurobiology, 2010, 70, 269-270.	1.5	4
105	Dammarane saponins from Gynostemma pentaphyllum. Phytochemistry, 2010, 71, 1149-1157.	1.4	19
106	S-Nitrosylation of Cyclin-Dependent Kinase 5 (Cdk5) Regulates Its Kinase Activity and Dendrite Growth During Neuronal Development. Journal of Neuroscience, 2010, 30, 14366-14370.	1.7	58
107	Tyk2/STAT3 Signaling Mediates β-Amyloid-Induced Neuronal Cell Death: Implications in Alzheimer's Disease. Journal of Neuroscience, 2010, 30, 6873-6881.	1.7	121
108	Cdk5-Mediated Phosphorylation of Â-Catenin Regulates Its Localization and GluR2-Mediated Synaptic Activity. Journal of Neuroscience, 2010, 30, 8457-8467.	1.7	27

#	Article	IF	CITATIONS
109	New Secoiridoid Glucosides from <i>Ligustrum lucidum</i> Induce ERK and CREB Phosphorylation in Cultured Cortical Neurons. Planta Medica, 2010, 76, 998-1003.	0.7	27
110	Multiple roles of the Rho GEF ephexin1 in synapse remodeling. Communicative and Integrative Biology, 2010, 3, 622-624.	0.6	17
111	Two Cyclin-Dependent Kinase Pathways Are Essential for Polarized Trafficking of Presynaptic Components. Cell, 2010, 141, 846-858.	13.5	144
112	Ephexin1 Is Required for Structural Maturation and Neurotransmission at the Neuromuscular Junction. Neuron, 2010, 65, 204-216.	3.8	55
113	Systems-Level Comparison of Host-Responses Elicited by Avian H5N1 and Seasonal H1N1 Influenza Viruses in Primary Human Macrophages. PLoS ONE, 2009, 4, e8072.	1.1	109
114	Synapse development and plasticity: roles of ephrin/Eph receptor signaling. Current Opinion in Neurobiology, 2009, 19, 275-283.	2.0	161
115	Multiple Gi Proteins Participate in Nerve Growth Factor-Induced Activation of c-Jun N-terminal Kinases in PC12 Cells. Neurochemical Research, 2009, 34, 1101-1112.	1.6	12
116	Recent advances in understanding the roles of Cdk5 in synaptic plasticity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 741-745.	1.8	81
117	The emerging role of autophagy in Parkinson's disease. Molecular Brain, 2009, 2, 29.	1.3	82
118	\hat{l}^2 -catenin in reverse action. Nature Neuroscience, 2008, 11, 244-246.	7.1	7
119	CDK5 activator p35 downregulates Eâ€cadherin precursor independently of CDK5. FEBS Letters, 2008, 582, 1197-1202.	1.3	11
120	Nerve growth factor-induced stimulation of p38 mitogen-activated protein kinase in PC12 cells is partially mediated via Gi/o proteins. Cellular Signalling, 2008, 20, 1538-1544.	1.7	20
121	Cyclin-Dependent Kinase 5 Supports Neuronal Survival through Phosphorylation of Bcl-2. Journal of Neuroscience, 2008, 28, 4872-4877.	1.7	79
122	Endophilin B1 as a Novel Regulator of Nerve Growth Factor/ TrkA Trafficking and Neurite Outgrowth. Journal of Neuroscience, 2008, 28, 9002-9012.	1.7	57
123	Bidirectional signaling of ErbB and Eph receptors at synapses. Neuron Glia Biology, 2008, 4, 211-221.	2.0	26
124	Hyperinduction of Cyclooxygenaseâ€2–Mediated Proinflammatory Cascade: A Mechanism for the Pathogenesis of Avian Influenza H5N1 Infection. Journal of Infectious Diseases, 2008, 198, 525-535.	1.9	111
125	Cdk5 in Dendrite and Synapse Development: Emerging Role as a Modulator of Receptor Tyrosine Kinase Signaling. , 2008, , 51-68.		0
126	Cdk5 Is Involved in BDNF-Stimulated Dendritic Growth in Hippocampal Neurons. PLoS Biology, 2007, 5, e63.	2.6	158

#	Article	IF	CITATIONS
127	Cyclin-Dependent Kinase 5 Links Extracellular Cues to Actin Cytoskeleton During Dendritic Spine Development. Cell Adhesion and Migration, 2007, 1, 110-112.	1.1	18
128	α2-Chimaerin interacts with EphA4 and regulates EphA4-dependent growth cone collapse. Proceedings of the United States of America, 2007, 104, 16347-16352.	3.3	99
129	NRG induces membrane targeting of Gαz in muscle: implication in myogenesis. NeuroReport, 2007, 18, 1433-1436.	0.6	1
130	Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nature Neuroscience, 2007, 10, 67-76.	7.1	285
131	Differential regulation of the Cdk5-dependent phosphorylation sites of inhibitor-1 and DARPP-32 by depolarization. Journal of Neurochemistry, 2007, 103, 1582-1593.	2.1	4
132	The roles of cyclin-dependent kinase 5 in dendrite and synapse development. Biotechnology Journal, 2007, 2, 949-957.	1.8	68
133	Signaling Through the Neurotrophin Receptors. , 2006, , 11-41.		3
134	Synaptic Roles of Cdk5: Implications in Higher Cognitive Functions and Neurodegenerative Diseases. Neuron, 2006, 50, 13-18.	3.8	165
135	Pctaire1 Phosphorylates N-Ethylmaleimide-sensitive Fusion Protein. Journal of Biological Chemistry, 2006, 281, 9852-9858.	1.6	58
136	STAT3 as a Downstream Mediator of Trk Signaling and Functions. Journal of Biological Chemistry, 2006, 281, 15636-15644.	1.6	97
137	autoinhibition of X11/Mint scaffold proteins revealed by the closed conformation of the PDZ tandem. FASEB Journal, 2006, 20, A490.	0.2	0
138	Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15224-15230.	3.3	98
139	A DNA Microarray for the Authentication of Toxic Traditional Chinese Medicinal Plants. Planta Medica, 2005, 71, 580-584.	0.7	47
140	Regulation of NMDA Receptors by Neuregulin Signaling in Prefrontal Cortex. Journal of Neuroscience, 2005, 25, 4974-4984.	1.7	191
141	α-Syntrophin regulates ARMS localization at the neuromuscular junction and enhances EphA4 signaling in an ARMS-dependent manner. Journal of Cell Biology, 2005, 169, 813-824.	2.3	48
142	SLAM-associated Protein as a Potential Negative Regulator in Trk Signaling. Journal of Biological Chemistry, 2005, 280, 41744-41752.	1.6	17
143	The N-terminal cytokine binding domain of LIFR is required for CNTF binding and signaling. FEBS Letters, 2005, 579, 4317-4323.	1.3	9
144	Identification of the Jak/Stat Proteins as Novel Downstream Targets of EphA4 Signaling in Muscle. Journal of Biological Chemistry, 2004, 279, 13383-13392.	1.6	75

#	Article	IF	CITATIONS
145	Cdk5/p35 Phosphorylates mSds3 and Regulates mSds3-mediated Repression of Transcription. Journal of Biological Chemistry, 2004, 279, 54438-54444.	1.6	38
146	Cdk5: mediator of neuronal death and survival. Neuroscience Letters, 2004, 361, 47-51.	1.0	82
147	Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6728-6733.	3.3	111
148	Postsynaptic signaling of new players at the neuromuscular junction. Journal of Neurocytology, 2003, 32, 727-741.	1.6	27
149	Central synapse and neuromuscular junction: same players, different roles. Trends in Genetics, 2003, 19, 395-402.	2.9	38
150	Ephrin-B1 Reverse Signaling Activates JNK through a Novel Mechanism That Is Independent of Tyrosine Phosphorylation. Journal of Biological Chemistry, 2003, 278, 24767-24775.	1.6	45
151	Solution Structure of the C-terminal Domain of the Ciliary Neurotrophic Factor (CNTF) Receptor and Ligand Free Associations among Components of the CNTF Receptor Complex. Journal of Biological Chemistry, 2003, 278, 23285-23294.	1.6	19
152	Leukemia Inhibitory Factor Receptor Signaling Negatively Modulates Nerve Growth Factor-induced Neurite Outgrowth in PC12 Cells and Sympathetic Neurons. Journal of Biological Chemistry, 2003, 278, 38731-38739.	1.6	33
153	Cdk5: A New Player at Synapses. NeuroSignals, 2003, 12, 180-190.	0.5	53
154	Pctaire1 Interacts with p35 and Is a Novel Substrate for Cdk5/p35. Journal of Biological Chemistry, 2002, 277, 31988-31993.	1.6	51
155	Integration of Signals from Receptor Tyrosine Kinases and G Protein-Coupled Receptors. NeuroSignals, 2002, 11, 5-19.	0.5	134
156	Induction of Cdk5 activity in rat skeletal muscle after nerve injury. NeuroReport, 2002, 13, 243-247.	0.6	25
157	Membrane distal cytokine binding domain of LIFR interacts with soluble CNTFR in vitro. FEBS Letters, 2002, 514, 214-218.	1.3	11
158	Genotyping on a Complementary Metal Oxide Semiconductor Silicon Polymerase Chain Reaction Chip with Integrated DNA Microarray. Analytical Chemistry, 2002, 74, 3168-3173.	3.2	91
159	Expression of Cdk5 and its activators in NT2 cells during neuronal differentiation. Journal of Neurochemistry, 2002, 81, 646-654.	2.1	21
160	Cloning of the α Component of the Chick Ciliary Neurotrophic Factor Receptor: Developmental Expression and Down-Regulation in Denervated Skeletal Muscle. Journal of Neurochemistry, 2002, 65, 2393-2400.	2.1	24
161	Differential Expression of Ciliary Neurotrophic Factor Receptor in Skeletal Muscle of Chick and Rat After Nerve Injury. Journal of Neurochemistry, 2002, 67, 1607-1612.	2.1	16
162	Complete 1H, 15N and 13C assignments of the carboxyl terminal domain of the ciliary neurotrophic factor receptor (CNTFR). Journal of Biomolecular NMR, 2002, 22, 95-96.	1.6	2

#	Article	IF	CITATIONS
163	Expression of Eph Receptors in Skeletal Muscle and Their Localization at the Neuromuscular Junction. Molecular and Cellular Neurosciences, 2001, 17, 1034-1047.	1.0	62
164	The expression profiles of neurotrophins and their receptors in rat and chicken tissues during development. Neuroscience Letters, 2001, 301, 107-110.	1.0	52
165	Overexpression of muscle specific kinase increases the transcription and aggregation of acetylcholine receptors in Xenopus embryos. Molecular Brain Research, 2001, 96, 21-29.	2.5	7
166	Expression of the P2Y1Nucleotide Receptor in Chick Muscle: Its Functional Role in the Regulation of Acetylcholinesterase and Acetylcholine Receptor. Journal of Neuroscience, 2001, 21, 9224-9234.	1.7	72
167	Surface Characterization of DNA Microarray on Silicon Dioxide and Compatible Silicon Materials in the Immobilization Process. Materials Research Society Symposia Proceedings, 2001, 711, 1.	0.1	0
168	Chips and Qi: microcomponent-based analysis in traditional Chinese medicine. Fresenius' Journal of Analytical Chemistry, 2001, 371, 190-194.	1.5	23
169	Expression of Retinoid Receptors During the Retinoic Acid-Induced Neuronal Differentiation of Human Embryonal Carcinoma Cells. Journal of Neurochemistry, 2001, 75, 34-40.	2.1	18
170	Surface Characterization of a Silicon-Chip-Based DNA Microarray. Langmuir, 2001, 17, 2497-2501.	1.6	143
171	Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nature Neuroscience, 2001, 4, 374-381.	7.1	159
172	Cloning and Expression of a Novel Nuclear Matrix-associated Protein That Is Regulated during the Retinoic Acid-induced Neuronal Differentiation. Journal of Biological Chemistry, 2001, 276, 17083-17091.	1.6	32
173	Induction of <i>Trk</i> A Expression by Differentiation Inducers in Human Myeloid Leukemia KG-1 Cells. Leukemia and Lymphoma, 2000, 36, 595-601.	0.6	10
174	Identification and Characterization of Differentially Expressed Genes in Denervated Muscle. Molecular and Cellular Neurosciences, 2000, 16, 127-140.	1.0	55
175	Cloning and Characterization of Muscle-Specific Kinase in Chicken. Molecular and Cellular Neurosciences, 2000, 16, 661-673.	1.0	57
176	Ganoderma extract activates MAP kinases and induces the neuronal differentiation of rat pheochromocytoma PC12 cells. FEBS Letters, 2000, 486, 291-296.	1.3	98
177	IL-6 enhanced the retinoic acid-induced differentiation of human acute promyelocytic leukemia cells. Cancer Letters, 2000, 148, 207-213.	3.2	5
178	Altered expression of tissue-type plasminogen activator and type 1 inhibitor in astrocytes of mouse cortex following scratch injury in culture. Neuroscience Letters, 2000, 285, 143-146.	1.0	11
179	Xenopusmuscle-specific kinase: molecular cloning and prominent expression in neural tissues during early embryonic development. European Journal of Neuroscience, 1999, 11, 373-382.	1.2	37
180	Induction of gp130 and LIF by differentiation inducers in human myeloid leukemia K562 cells. Leukemia Research, 1999, 23, 1113-1119.	0.4	7

#	Article	IF	CITATIONS
181	Identification and characterization of splice variants of ephrin-A3 and ephrin-A5. FEBS Letters, 1999, 458, 265-269.	1.3	23
182	Identification of Genes Induced by Neuregulin in Cultured Myotubes. Molecular and Cellular Neurosciences, 1999, 14, 241-253.	1.0	21
183	The Neurotrophins and Neuropoietic Cytokines: Two Families of Growth Factors Acting on Neural and Hematopoietic Cells. Annals of the New York Academy of Sciences, 1998, 840, 97-106.	1.8	54
184	Expression of BDNF and trkB as a function of age and cognitive performance. Brain Research, 1998, 812, 200-208.	1.1	169
185	Cloning and Expression of a Novel Neurotrophin, NT-7, from Carp. Molecular and Cellular Neurosciences, 1998, 11, 64-76.	1.0	119
186	Induction of TrkA receptor by retinoic acid in leukaemia cell lines. NeuroReport, 1997, 8, 1067-1070.	0.6	27
187	Trauma-induced striatal CNTF and BDNF mRNA in hemiparkinsonian rats. NeuroReport, 1997, 8, 507-511.	0.6	14
188	Muscle-derived neurotrophin-3 increases the aggregation of acetylcholine receptors in neuron–muscle co-cultures. NeuroReport, 1997, 8, 3895-3900.	0.6	29
189	Identification of Candidate Genes Induced by Retinoic Acid in Embryonal Carcinoma Cells. Journal of Neurochemistry, 1997, 68, 1882-1888.	2.1	21
190	Agrinâ€Deficient Myotube Retains Its Acetylcholine Receptor Aggregation Ability when Challenged with Agrin. Journal of Neurochemistry, 1997, 69, 2555-2563.	2.1	5
191	Structural determinants of Trk receptor specificities using BNDF-based neurotrophin chimeras. Journal of Neuroscience Research, 1996, 46, 618-629.	1.3	7
192	Chapter 17 Neurotrophic factors and their receptors. Progress in Brain Research, 1995, 105, 189-195.	0.9	10
193	Binding Characteristics of Ciliary Neurotrophic Factor to Sympathetic Neurons and Neuronal Cell Lines. Journal of Biological Chemistry, 1995, 270, 313-318.	1.6	24
194	Genomic organization and chromosomal localization of the human and mouse genes encoding the $\hat{I}\pm$ receptor component for ciliary neurotrophic factor. Genomics, 1995, 25, 157-163.	1.3	20
195	Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell, 1995, 83, 313-322.	13.5	368
196	Neurotrophic factors and their receptors. Annals of Neurology, 1994, 35, S13-S16.	2.8	38
197	Neurotrophic Factor Receptors and Their Signal Transduction Capabilities in Rat Astrocytes. European Journal of Neuroscience, 1994, 6, 693-705.	1.2	154
198	In Situ Hybridization of trkB and trkC Receptor mRNA in Rat Forebrain and Association with High-affinity Binding of [125I]BDNF, [125I]NT-4/5 and [125I]NT-3. European Journal of Neuroscience, 1994, 6, 1389-1405.	1.2	194

#	Article	IF	CITATIONS
199	Retrograde axonal transport of LIF is increased by peripheral nerve injury: Correlation with increased LIF expression in distal nerve. Neuron, 1994, 12, 191-204.	3.8	271
200	CNTF, FGF, and NGF collaborate to drive the terminal differentiation of MAH cells into postmitotic neurons. Neuron, 1994, 13, 443-455.	3.8	97
201	Neurotrophic factor receptors: just like other growth factor and cytokine receptors?. Current Opinion in Neurobiology, 1994, 4, 400-405.	2.0	32
202	Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature, 1993, 363, 350-353.	13.7	750
203	Injury-induced Regulation of Ciliary Neurotrophic Factor mRNA in the Adult Rat Brain. European Journal of Neuroscience, 1993, 5, 25-33.	1.2	297
204	The Neurotrophins BDNF, NT-3 and NT-4/5, But Not NGF, Up-regulate the Cholinergic Phenotype of Developing Motor Neurons. European Journal of Neuroscience, 1993, 5, 466-474.	1.2	190
205	Receptors and signaling pathways of ciliary neurotrophic factor and the neurotrophins. Seminars in Neuroscience, 1993, 5, 249-257.	2.3	19
206	Alternative forms of rat TrkC with different functional capabilities. Neuron, 1993, 10, 963-974.	3.8	377
207	The α component of the CNTF receptor is required for signaling and defines potential CNTF targets in the adult and during development. Neuron, 1993, 10, 89-102.	3.8	404
208	Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells. Neuron, 1993, 10, 137-149.	3.8	524
209	Ciliary neurotrophic factor and its receptor complex. Progress in Growth Factor Research, 1992, 4, 139-155.	1.7	117
210	Regulation of ciliary neurotrophic factor expression in myelin-related Schwann cells in vivo. Neuron, 1992, 9, 295-305.	3.8	313
211	CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130. Cell, 1992, 69, 1121-1132.	13.5	723
212	Expression of Ciliary Neurotrophic Factor and the Neurotrophins - Nerve Growth Factor, Brain-Derived Neurotrophic Factor and Neurotrophin 3-in Cultured Rat Hippocampal Astrocytes. European Journal of Neuroscience, 1992, 4, 459-471.	1.2	189
213	ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell, 1991, 65, 663-675.	13.5	1,862
214	Human and rat brain-derived neurotrophic factor and neurotrophin-3: Gene structures, distributions, and chromosomal localizations. Genomics, 1991, 10, 558-568.	1.3	465
215	Pattern of presynaptic nerve activity can determine the type of neurotransmitter regulating a postsynaptic event. Nature, 1984, 311, 472-474.	13.7	80
216	Acute stimulation of ganglionic tyrosine hydroxylase activity by secretin, VIP and PHI. Peptides, 1984, 5, 309-312.	1.2	18