
Olga V Makhlynets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3718888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Short Selfâ€Assembling Peptides Are Able to Bind to Copper and Activate Oxygen. Angewandte Chemie - International Edition, 2016, 55, 9017-9020.	7.2	106
2	Zinc-binding structure of a catalytic amyloid from solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6191-6196.	3.3	102
3	Copper-Containing Catalytic Amyloids Promote Phosphoester Hydrolysis and Tandem Reactions. ACS Catalysis, 2018, 8, 59-62.	5.5	81
4	New Tricks for Old Proteins: Single Mutations in a Nonenzymatic Protein Give Rise to Various Enzymatic Activities. Journal of the American Chemical Society, 2015, 137, 14905-14911.	6.6	68
5	Design of Allosterically Regulated Protein Catalysts. Biochemistry, 2015, 54, 1444-1456.	1.2	52
6	Genetic Characterization and Role in Virulence of the Ribonucleotide Reductases of Streptococcus sanguinis. Journal of Biological Chemistry, 2014, 289, 6273-6287.	1.6	50
7	Design of Catalytic Peptides and Proteins Through Rational and Combinatorial Approaches. Annual Review of Biomedical Engineering, 2016, 18, 311-328.	5.7	48
8	Streptococcus sanguinis Class Ib Ribonucleotide Reductase. Journal of Biological Chemistry, 2014, 289, 6259-6272.	1.6	45
9	Nine-Residue Peptide Self-Assembles in the Presence of Silver to Produce a Self-Healing, Cytocompatible, Antimicrobial Hydrogel. ACS Applied Materials & Interfaces, 2020, 12, 17091-17099.	4.0	36
10	Short Selfâ€Assembling Peptides Are Able to Bind to Copper and Activate Oxygen. Angewandte Chemie, 2016, 128, 9163-9166.	1.6	20
11	Design of Catalytically Amplified Sensors for Small Molecules. Biomolecules, 2014, 4, 402-418.	1.8	18
12	A single amino acid enzyme. Nature Catalysis, 2019, 2, 949-950.	16.1	17
13	Peptide hydrogel with self-healing and redox-responsive properties. Nano Convergence, 2022, 9, 18.	6.3	14
14	Characteristics and therapeutic applications of antimicrobial peptides. Biophysics Reviews, 2021, 2, .	1.0	12
15	Functional Frankensteins. Nature Chemistry, 2016, 8, 823-824.	6.6	9
16	Beneficial Impacts of Incorporating the Non-Natural Amino Acid Azulenyl-Alanine into the Trp-Rich Antimicrobial Peptide buCATHL4B. Biomolecules, 2021, 11, 421.	1.8	9
17	Functional tuning of the catalytic residue p <i>K</i> _a in a <i>de novo</i> designed esterase. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1656-1665.	1.5	8
18	Uno Ferro, a de novo Designed Protein, Binds Transition Metals with High Affinity and Stabilizes Semiquinone Radical Anion. Chemistry - A European Journal, 2019, 25, 15252-15256.	1.7	7

Olga V Makhlynets

#	Article	IF	CITATIONS
19	Secretion of functional formate dehydrogenase in Pichia pastoris. Protein Engineering, Design and Selection, 2017, 30, 279-284.	1.0	6
20	Contributions of primary coordination ligands and importance of outer sphere interactions in UFsc, a de novo designed protein with high affinity for metal ions. Journal of Inorganic Biochemistry, 2020, 212, 111224.	1.5	5
21	Catalytic Amyloid Fibrils That Bind Copper to Activate Oxygen. Methods in Molecular Biology, 2017, 1596, 59-68.	0.4	3
22	Kemp Eliminases of the AlleyCat Family Possess High Substrate Promiscuity. ChemCatChem, 2019, 11, 1425-1430.	1.8	3
23	Covalent Linkage and Macrocylization Preserve and Enhance Synergistic Interactions in Catalytic Amyloids. ChemBioChem, 2021, 22, 585-591.	1.3	3
24	Mechanistic studies of the cofactor assembly in class Ib ribonucleotide reductases and protein affinity for MnII and FeII. Metallomics, 2021, 13, .	1.0	3
25	Finding a Silver Bullet in a Stack of Proteins. Biochemistry, 2017, 56, 6627-6628.	1.2	2
26	A Designed Enzyme Promotes Selective Postâ€ŧranslational Acylation. ChemBioChem, 2018, 19, 1605-1608.	1.3	2
27	Kemp Eliminases of the AlleyCat Family Possess High Substrate Promiscuity. ChemCatChem, 2019, 11, 1377-1377.	1.8	0