Ming-Lei Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3718720/publications.pdf Version: 2024-02-01

MINC-LEI ZHAO

#	Article	IF	CITATIONS
1	Transcriptional Repression by Histone Deacetylases in Plants. Molecular Plant, 2014, 7, 764-772.	8.3	231
2	Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MalCE1 in methyl jasmonateâ€induced chilling tolerance in banana fruit. Plant, Cell and Environment, 2013, 36, 30-51.	5.7	198
3	PHYTOCHROME INTERACTING FACTOR3 Associates with the Histone Deacetylase HDA15 in Repression of Chlorophyll Biosynthesis and Photosynthesis in Etiolated <i>Arabidopsis</i> Seedlings Â. Plant Cell, 2013, 25, 1258-1273.	6.6	186
4	Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark. Nucleic Acids Research, 2017, 45, 7137-7150.	14.5	89
5	The Arabidopsis SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA Targets Directly to <i>PINs</i> and Is Required for Root Stem Cell Niche Maintenance. Plant Cell, 2015, 27, 1670-1680.	6.6	88
6	Arabidopsis BREVIPEDICELLUS Interacts with the SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA to Regulate KNAT2 and KNAT6 Expression in Control of Inflorescence Architecture. PLoS Genetics, 2015, 11, e1005125.	3.5	73
7	Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes. Frontiers in Plant Science, 2015, 6, 159.	3.6	66
8	Molecular Characterization of a Strawberry FaASR Gene in Relation to Fruit Ripening. PLoS ONE, 2011, 6, e24649.	2.5	54
9	Identification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis. Scientific Reports, 2016, 6, 37135.	3.3	48
10	Genome-Wide Identification of Histone Modifiers and Their Expression Patterns during Fruit Abscission in Litchi. Frontiers in Plant Science, 2017, 8, 639.	3.6	42
11	KNOX protein KNAT1 regulates fruitlet abscission in litchi by repressing ethylene biosynthetic genes. Journal of Experimental Botany, 2020, 71, 4069-4082.	4.8	35
12	Involvement of HD-ZIP I transcription factors LcHB2 and LcHB3 in fruitlet abscission by promoting transcription of genes related to the biosynthesis of ethylene and ABA in litchi. Tree Physiology, 2019, 39, 1600-1613.	3.1	32
13	The HD-Zip transcription factor LcHB2 regulates litchi fruit abscission through the activation of two cellulase genes. Journal of Experimental Botany, 2019, 70, 5189-5203.	4.8	30
14	LcEIL2/3 are involved in fruitlet abscission via activating genes related to ethylene biosynthesis and cell wall remodeling in litchi. Plant Journal, 2020, 103, 1338-1350.	5.7	24
15	Molecular Events Involved in Fruitlet Abscission in Litchi. Plants, 2020, 9, 151.	3.5	23
16	Brassinosteroids suppress ethylene-induced fruitlet abscission through LcBZR1/2-mediated transcriptional repression of <i>LcACS1</i> / <i>4</i> and <i>LcACO2</i> / <i>3</i> in litchi. Horticulture Research, 2021, 8, 105.	6.3	17
17	<i>LcERF2</i> modulates cell wall metabolism by directly targeting a UDPâ€glucoseâ€4â€epimerase gene to regulate pedicel development and fruit abscission of litchi. Plant Journal, 2021, 106, 801-816.	5.7	15
18	Identification and Characterization of HAESA-Like Genes Involved in the Fruitlet Abscission in Litchi. International Journal of Molecular Sciences, 2019, 20, 5945.	4.1	14

Ming-Lei Zhao

#	Article	IF	CITATIONS
19	RNA-Seq Provides New Insights into the Molecular Events Involved in "Ball-Skin versus Bladder Effect―on Fruit Cracking in Litchi. International Journal of Molecular Sciences, 2021, 22, 454.	4.1	14
20	Xyloglucan endotransglucosylase/hydrolase genes <i><scp>LcXTH4</scp>/7/19</i> are involved in fruitlet abscission and are activated by <scp>LcEIL2</scp> /3 in litchi. Physiologia Plantarum, 2021, 173, 1136-1146.	5.2	6
21	The LcKNAT1-LcEIL2/3 Regulatory Module Is Involved in Fruitlet Abscission in Litchi. Frontiers in Plant Science, 2021, 12, 802016.	3.6	4
22	Dynamics of Energy Metabolism in Carbon Starvation-Induced Fruitlet Abscission in Litchi. Horticulturae, 2021, 7, 576.	2.8	0