
Jose E. Cavazos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/371863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Annals of Neurology, 1989, 26, 321-330.	2.8	1,072
2	Synaptic reorganization in the hippocampus induced by abnormal functional activity. Science, 1988, 239, 1147-1150.	6.0	882
3	Neuro-QOL. Neurology, 2012, 78, 1860-1867.	1.5	522
4	Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and permanence. Journal of Neuroscience, 1991, 11, 2795-2803.	1.7	476
5	New onset geriatric epilepsy: A randomized study of gabapentin, lamotrigine, and carbamazepine. Neurology, 2005, 64, 1868-1873.	1.5	471
6	Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures. Journal of Neuroscience, 1994, 14, 3106-3121.	1.7	445
7	Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Annals of Neurology, 1998, 43, 413-426.	2.8	431
8	Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Research, 1990, 527, 1-6.	1.1	373
9	Alteration of long-lasting structural and functional effects of kainic acid in the hippocampus by brief treatment with phenobarbital. Journal of Neuroscience, 1992, 12, 4173-4187.	1.7	109
10	The Impact of Epilepsy on Health Status among Younger and Older Adults. Epilepsia, 2005, 46, 1820-1827.	2.6	100
11	Effectiveness of Antiepileptic Drug Combination Therapy for Partial-Onset Seizures Based on Mechanisms of Action. JAMA Neurology, 2014, 71, 985.	4.5	99
12	Ultrastructural features of sprouted mossy fiber synapses in kindled and kainic acid-treated rats. Journal of Comparative Neurology, 2003, 458, 272-292.	0.9	97
13	Sprouting and synaptic reorganization in the subiculum and CA1 region of the hippocampus in acute and chronic models of partial-onset epilepsy. Neuroscience, 2004, 126, 677-688.	1.1	96
14	Activation of the dentate gyrus by pentylenetetrazol evoked seizures induces mossy fiber synaptic reorganization. Brain Research, 1992, 593, 257-264.	1.1	91
15	Post-traumatic epilepsy: an overview. Therapy: Open Access in Clinical Medicine, 2010, 7, 527-531.	0.2	84
16	Detection of generalized tonic–clonic seizures using surface electromyographic monitoring. Epilepsia, 2017, 58, 1861-1869.	2.6	80
17	The role of synaptic reorganization in mesial temporal lobe epilepsy. Epilepsy and Behavior, 2006, 8, 483-493.	0.9	79
18	Electromyographyâ€based seizure detector: Preliminary results comparing a generalized tonic–clonic seizure detection algorithm to videoâ€ <scp>EEG</scp> recordings. Epilepsia, 2015, 56, 1432-1437.	2.6	76

Jose E. Cavazos

#	Article	IF	CITATIONS
19	Septotemporal variation of the supragranular projection of the mossy fiber pathway in the dentate gyrus of normal and kindled rats. Hippocampus, 1992, 2, 363-372.	0.9	71
20	Long-term structural and functional alterations induced in the hippocampus by kindling: Implications for memory dysfunction and the development of epilepsy. Hippocampus, 1994, 4, 254-258.	0.9	60
21	Sumatriptan-induced stroke in sagittal sinus thrombosis. Lancet, The, 1994, 343, 1105-1106.	6.3	54
22	Biochemical and behavioral effects of a sensorimotor cortex injury in rats pretreated with the noradrenergic neurotoxin DSP-4 Behavioral Neuroscience, 1992, 106, 964-973.	0.6	50
23	Potential mechanisms of sudden unexpected death in epilepsy. Epilepsy and Behavior, 2013, 26, 410-414.	0.9	50
24	Validity of the Neurology Quality-of-Life (Neuro-QoL) measurement system in adult epilepsy. Epilepsy and Behavior, 2014, 31, 77-84.	0.9	47
25	Synaptic reorganization in subiculum and CA3 after early-life status epilepticus in the kainic acid rat model. Epilepsy Research, 2007, 73, 156-165.	0.8	38
26	Epilepsy in the Elderly. Seminars in Neurology, 2008, 28, 336-341.	0.5	38
27	Thalamic functional connectivity predicts seizure laterality in individual TLE patients: Application of a biomarker development strategy. NeuroImage: Clinical, 2015, 7, 273-280.	1.4	38
28	A Mouse Model of Repetitive Blast Traumatic Brain Injury Reveals Post-Trauma Seizures and Increased Neuronal Excitability. Journal of Neurotrauma, 2020, 37, 248-261.	1.7	38
29	Prevention of brain damage after traumatic brain injury by pharmacological enhancement of KCNQ (Kv7, "M-typeâ€) K ⁺ currents in neurons. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1256-1273.	2.4	37
30	Delta Rhythm Orchestrates the Neural Activity Underlying the Resting State BOLD Signal via Phase–amplitude Coupling. Cerebral Cortex, 2019, 29, 119-133.	1.6	28
31	The hippocampus: normal anatomy and pathology American Journal of Roentgenology, 1998, 171, 1139-1146.	1.0	27
32	Common data elements for epilepsy mobile health systems. Epilepsia, 2018, 59, 1020-1026.	2.6	27
33	Downregulation of KCNMB4 expression and changes in BK channel subtype in hippocampal granule neurons following seizure activity. PLoS ONE, 2017, 12, e0188064.	1.1	21
34	Neuro-QOL and the NIH Toolbox: implications for epilepsy. Therapy: Open Access in Clinical Medicine, 2010, 7, 533-540.	0.2	20
35	Neurocysticercosis and Epilepsy. Epilepsy Currents, 2014, 14, 23-28.	0.4	20
36	Pure motor hemiplegia including the face induced by an infarct of the medullary pyramid. Clinical Neurology and Neurosurgery, 1996, 98, 21-23.	0.6	19

Jose E. Cavazos

#	Article	IF	CITATIONS
37	Biochemical and behavioral effects of a sensorimotor cortex injury in rats pretreated with the noradrenergic neurotoxin DSP-4 Behavioral Neuroscience, 1992, 106, 964-973.	0.6	19
38	Neuroprotective Roles of the Adenosine A3 Receptor Agonist AST-004 in Mouse Model of Traumatic Brain Injury. Neurotherapeutics, 2021, 18, 2707-2721.	2.1	12
39	Time to response and patient visibility during tonic–clonic seizures in the epilepsy monitoring unit. Epilepsy and Behavior, 2018, 89, 84-88.	0.9	9
40	Longitudinal observations using simultaneous fMRI, multiple channel electrophysiology recording, and chemical microiontophoresis in the rat brain. Journal of Neuroscience Methods, 2018, 306, 68-76.	1.3	9
41	Automated Processing of Single-Channel Surface Electromyography From Generalized Tonic–Clonic Seizures to Inform Semiology. Journal of Clinical Neurophysiology, 2020, 37, 56-61.	0.9	9
42	Outcomes associated with switching from monotherapy to adjunctive therapy for patients with partial onset seizures. Expert Review of Pharmacoeconomics and Outcomes Research, 2015, 15, 349-355.	0.7	6
43	Chronic Cellular Hyperexcitability in Elderly Epileptic Rats with Spontaneous Seizures Induced by Kainic Acid Status Epilepticus while Young Adults. , 2011, 2, 332-8.		5
44	A collaborative effort to establish a comprehensive epilepsy program in Peru. Epilepsy and Behavior, 2013, 26, 96-99.	0.9	4
45	Creutzfeldt-Jakob Disease: In-hospital demographics report of national data in the United States from 2016 and review of a rapidly-progressive case. Clinical Neurology and Neurosurgery, 2020, 197, 106103.	0.6	4
46	Influence of Intracranial Electrode Density and Spatial Configuration on Interictal Spike Localization. Journal of Clinical Neurophysiology, 2015, 32, e30-e40.	0.9	3
47	Changing characteristics of epilepsy interventional clinical trials over the last decade: Clinicaltrials.Gov registry. Epilepsy Research, 2020, 164, 106350.	0.8	2
48	Responsive neurostimulation in epilepsy therapy: Some answers, lingering questions. Epilepsy and Behavior, 2014, 34, 25-28.	0.9	0
49	Homocysteinemia Associated with Anti-Epileptic Medications - A Retrospective Study of Clinical Practice (P06.108). Neurology, 2012, 78, P06.108-P06.108.	1.5	0
50	Providing Quality Epilepsy Care for Veterans. Federal Practitioner: for the Health Care Professionals of the VA, DoD, and PHS, 2016, 33, 26-32.	0.6	0
51	First-Generation Antiepileptic Drugs. , 0, , .		0