Kandadai Srinivasan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3718304/publications.pdf

Version: 2024-02-01

331670 361022 1,271 41 21 35 citations h-index g-index papers 43 43 43 940 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Activated carbon–carbon dioxide based two stage adsorption compression Brayton cycle power generation. Adsorption, 2019, 25, 1663-1672.	3.0	2
2	Modeling study of two-stage, multi-bed air cooled silica gel + water adsorption cooling cum desalination system. Applied Thermal Engineering, 2017, 114, 704-712.	6.0	43
3	Influence of cycle time and collector area on solar driven adsorption chillers. Solar Energy, 2016, 136, 450-459.	6.1	31
4	Solar driven carbon dioxide Brayton cycle power generation with thermal compression. Applied Thermal Engineering, 2016, 109, 854-860.	6.0	22
5	Carbon dioxide based power generation in renewable energy systems. Applied Thermal Engineering, 2016, 109, 831-840.	6.0	43
6	Silica Gel + Water Adsorber Chiller and Desalination System: A Transient Heat Transfer Study. Journal of Thermal Science and Engineering Applications, 2016, 8, .	1.5	11
7	Development and performance studies of an air cooled two-stage multi-bed silica-gel + water adsorption system. International Journal of Refrigeration, 2016, 67, 174-189.	3.4	40
8	Instrumentation and control of a two-stage 4-bed silica gel+water adsorption cooling cum desalination system. Measurement: Journal of the International Measurement Confederation, 2016, 79, 29-43.	5.0	11
9	Performance evaluation of a two-stage silicaÂgelÂ+Âwater adsorption based cooling-cum-desalination system. International Journal of Refrigeration, 2015, 58, 186-198.	3.4	69
10	A trade-off between maxima in efficiency and specific work output of super- and trans-critical CO2 Brayton cycles. Journal of Supercritical Fluids, 2015, 98, 119-126.	3.2	14
11	Simulation study of a two-stage adsorber system. Applied Thermal Engineering, 2014, 72, 283-288.	6.0	37
12	Adsorption kinetics of propane on energetically heterogeneous activated carbon. Applied Thermal Engineering, 2014, 72, 206-210.	6.0	2
13	Relation between the Isentropic Index and the Grý neisen Parameter for Saturated Liquids. Industrial & 2014, 53, 6866-6870.	3.7	1
14	Elevation of Heat Rejection Temperature in Transcritical Condensing Cycles Using CO2+Propane Mixtures. , 2014, , .		0
15	Adsorption Isotherms and Heat of Adsorption of Difluoromethane on Activated Carbons. Journal of Chemical & Che	1.9	33
16	Realistic minimum desorption temperatures and compressor sizing for activated carbonÂ+ÂHFC 134a adsorption coolers. Applied Thermal Engineering, 2013, 51, 551-559.	6.0	10
17	Evaluation of carbon dioxide blends with isopentane and propane as working fluids for organic Rankine cycles. Applied Thermal Engineering, 2013, 52, 439-448.	6.0	61
18	Supercritical carbon dioxide Brayton cycle for concentrated solar power. Journal of Supercritical Fluids, 2013, 76, 54-60.	3.2	166

#	Article	IF	Citations
19	Evaluation of isopentane, R-245fa and their mixtures as working fluids for organic Rankine cycles. Applied Thermal Engineering, 2013, 51, 292-300.	6.0	107
20	On isentropic lines and isentropic exponents. Journal of Chemical Thermodynamics, 2013, 56, 144-148.	2.0	3
21	Selected Papers from the International Symposium on Innovative Materials for Processes in Energy Systems 2010 (IMPRES2010): Part I. Heat Transfer Engineering, 2013, 34, 887-888.	1.9	O
22	Thermodynamic Property Slopes from Primary Measurements. International Journal of Mechanical Engineering Education, 2012, 40, 79-91.	1.0	1
23	Waring and Riedel Functions for the Liquid–Vapor Coexistence Curve. Industrial & Description (Chemistry Research, 2012, 51, 3197-3202.	3.7	8
24	Calculation of Heat of Adsorption of Gases and Refrigerants on Activated Carbons from Direct Measurements Fitted to the Dubinin–Astakhov Equation. Adsorption Science and Technology, 2012, 30, 549-565.	3.2	19
25	A method for the calculation of the adsorbed phase volume and pseudo-saturation pressure from adsorption isotherm data on activated carbon. Physical Chemistry Chemical Physics, 2011, 13, 12559.	2.8	41
26	Performance evaluation of combined adsorption refrigeration cycles. International Journal of Refrigeration, 2011, 34, 129-137.	3.4	55
27	Adsorption Thermodynamics of Silica Gelâ^'Water Systems. Journal of Chemical & Data, 2009, 54, 448-452.	1.9	53
28	Adsorption of Nitrogen on Activated Carbon-Refit of Experimental Data and Derivation of Properties Required for Design of Equipment. Journal of Chemical & Engineering Data, 2009, 54, 2291-2295.	1.9	11
29	Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces. Langmuir, 2009, 25, 2204-2211.	3.5	78
30	Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region. Langmuir, 2009, 25, 7359-7367.	3.5	31
31	Numerical Study of Heat Transfer From Pin-Fin Heat Sink Using Steady and Pulsated Impinging Jets. IEEE Transactions on Components and Packaging Technologies, 2009, 32, 859-867.	1.3	13
32	Adsorption of Equal Mass Fraction Near an Azeotropic Mixture of Pentafluoroethane and 1,1,1-Trifluoroethane on Activated Carbon. Journal of Chemical & Engineering Data, 2008, 53, 1872-1876.	1.9	24
33	On Thermodynamics of Advanced Adsorption Cooling Devices. , 2008, , .		1
34	Adsorption Characteristics of Maxsorb-III + Methane Systems by Desorption Experiments., 2007,, 415.		2
35	Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device. Applied Physics Letters, 2007, 91, 111902.	3.3	50
36	Evaluation of Adsorption Parameters and Heats of Adsorption through Desorption Measurements. Journal of Chemical & Engineering Data, 2007, 52, 2419-2424.	1.9	62

3

#	Article	IF	CITATIONS
37	Isosteric heats of adsorption extracted from experiments of ethanol and HFC 134a on carbon based adsorbents. International Journal of Heat and Mass Transfer, 2007, 50, 902-907.	4.8	27
38	Optimum operating conditions for an adsorption cryocooler: a case of activated carbon+nitrogen system. Cryogenics, 2005, 45, 193-197.	1.7	9
39	Adsorption of 1,1,1,2-Tetrafluoroethane on Activated Charcoal. Journal of Chemical & Engineering Data, 2001, 46, 417-422.	1.9	62
40	Diurnal and environmental characterization of solar photovoltaic panels using a PC-AT add on plug in card. Solar Energy Materials and Solar Cells, 1996, 44, 25-36.	6.2	12
41	CFC Alternatives — A Fresh Look. Environmental Conservation, 1992, 19, 339-342.	1.3	1