Lidia Ciccone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3718141/publications.pdf

Version: 2024-02-01

623734 677142 35 571 14 22 h-index citations g-index papers 36 36 36 726 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone. Cell Chemical Biology, 2019, 26, 482-492.e7.	5.2	46
2	The Positive Side of the Alzheimer's Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1. Molecules, 2020, 25, 2439.	3.8	37
3	Sugarâ€Based Arylsulfonamide Carboxylates as Selective and Waterâ€Soluble Matrix Metalloproteinaseâ€12 Inhibitors. ChemMedChem, 2016, 11, 1626-1637.	3.2	36
4	Natural compounds as inhibitors of transthyretin amyloidosis and neuroprotective agents: analysis of structural data for future drug design. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1145-1162.	5.2	35
5	Development of Thioaryl-Based Matrix Metalloproteinase-12 Inhibitors with Alternative Zinc-Binding Groups: Synthesis, Potentiometric, NMR, and Crystallographic Studies. Journal of Medicinal Chemistry, 2018, 61, 4421-4435.	6.4	34
6	Transthyretin complexes with curcumin and bromo-estradiol: evaluation of solubilizing multicomponent mixtures. New Biotechnology, 2015, 32, 54-64.	4.4	33
7	Comparison of helical scan and standard rotation methods in single-crystal X-ray data collection strategies. Journal of Synchrotron Radiation, 2017, 24, 42-52.	2.4	27
8	Carbonic Anhydrase Inhibitors and Epilepsy: State of the Art and Future Perspectives. Molecules, 2021, 26, 6380.	3.8	27
9	Copper mediated amyloid- \hat{l}^2 binding to Transthyretin. Scientific Reports, 2018, 8, 13744.	3.3	26
10	Natural Marine and Terrestrial Compounds as Modulators of Matrix Metalloproteinases-2 (MMP-2) and MMP-9 in Alzheimer's Disease. Pharmaceuticals, 2021, 14, 86.	3.8	26
11	Multicomponent mixtures for cryoprotection and ligand solubilization. Biotechnology Reports (Amsterdam, Netherlands), 2015, 7, 120-127.	4.4	22
12	A new crystal form of human transthyretin obtained with a curcumin derived ligand. Journal of Structural Biology, 2016, 194, 8-17.	2.8	18
13	Human TTR conformation altered by rhenium tris-carbonyl derivatives. Journal of Structural Biology, 2016, 195, 353-364.	2.8	17
14	Targeting Different Transthyretin Binding Sites with Unusual Natural Compounds. ChemMedChem, 2016, 11, 1865-1874.	3.2	16
15	Synthesis and structural analysis of halogen substituted fibril formation inhibitors of Human Transthyretin (TTR). Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 40-51.	5.2	15
16	Exosite inhibition of ADAMTS-5 by a glycoconjugated arylsulfonamide. Scientific Reports, 2021, 11, 949.	3.3	14
17	Bifunctional Inhibitors as a New Tool To Reduce Cancer Cell Invasion by Impairing MMP-9 Homodimerization. ACS Medicinal Chemistry Letters, 2017, 8, 293-298.	2.8	13
18	N -(Aroyl)- N -(arylmethyloxy)-α-alanines: Selective inhibitors of aldose reductase. Bioorganic and Medicinal Chemistry, 2017, 25, 3068-3076.	3.0	13

#	Article	IF	Citations
19	Activation of carbonic anhydrases from human brain by amino alcohol oxime ethers: towards human carbonic anhydrase VII selective activators. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 48-57.	5.2	12
20	Neuroglobin and neuroprotection: the role of natural and synthetic compounds in neuroglobin pharmacological induction. Neural Regeneration Research, 2021, 16, 2353.	3.0	12
21	Identification of histone deacetylase inhibitors with (arylidene)aminoxy scaffold active in uveal melanoma cell lines. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 34-47.	5.2	11
22	Nature-Inspired O-Benzyl Oxime-Based Derivatives as New Dual-Acting Agents Targeting Aldose Reductase and Oxidative Stress. Biomolecules, 2022, 12, 448.	4.0	11
23	X-ray crystal structure and activity of fluorenyl-based compounds as transthyretin fibrillogenesis inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 824-833.	5.2	10
24	Application of PROTAC strategy to TTR-Aβ protein-protein interaction for the development of Alzheimer's disease drugs. Neural Regeneration Research, 2021, 16, 1554.	3.0	10
25	Physiological Metals Can Induce Conformational Changes in Transthyretin Structure: Neuroprotection or Misfolding Induction?. Crystals, 2021, 11, 354.	2.2	9
26	Monoaryl derivatives as transthyretin fibril formation inhibitors: Design, synthesis, biological evaluation and structural analysis. Bioorganic and Medicinal Chemistry, 2020, 28, 115673.	3.0	8
27	Multifunctional Small Molecules as Potential Anti-Alzheimer's Disease Agents. Molecules, 2021, 26, 6015.	3.8	7
28	Synthesis and cycloxygenase inhibitory properties of new naphthalene-methylsulfonamido, naphthalene-methylsulfonyl and tetrahydronaphthalen-methylsulfonamido compounds. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 406-412.	5.2	6
29	Oxy-imino saccharidic derivatives as a new structural class of aldose reductase inhibitors endowed with anti-oxidant activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1194-1205.	5.2	5
30	Discovery of a new ATP-citrate lyase (ACLY) inhibitor identified by a pharmacophore-based virtual screening study. Journal of Biomolecular Structure and Dynamics, 2021, 39, 3996-4004.	3.5	4
31	Discovery of Dimeric Arylsulfonamides as Potent ADAM8 Inhibitors. ACS Medicinal Chemistry Letters, 2021, 12, 1787-1793.	2.8	3
32	Antioxidant Quercetin 3-O-Glycosylated Plant Flavonols Contribute to Transthyretin Stabilization. Crystals, 2022, 12, 638.	2.2	3
33	MT9, a natural peptide from black mamba venom antagonizes the muscarinic type 2 receptor and reverses the M2R-agonist-induced relaxation in rat and human arteries. Biomedicine and Pharmacotherapy, 2022, 150, 113094.	5.6	3
34	Synthesis and Evaluation of Monoaryl Derivatives as Transthyretin Fibril Formation Inhibitors. Pharmaceutical Chemistry Journal, 2022, 56, 38-47.	0.8	2
35	Pterostilbene fluorescent probes as potential tools for targeting neurodegeneration in biological applications. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1812-1820.	5.2	0