List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3717634/publications.pdf Version: 2024-02-01

CHIMIELI

#	Article	IF	CITATIONS
1	Ergot Alkaloid and Endogenous Hormones Quantities and Relationship in Epichloë Endophyte: Drunken Horse Grass are Affected by Altitude. Journal of Plant Growth Regulation, 2023, 42, 1979-1990.	5.1	2
2	Epichloë Endophyte Improves Ergot Disease Resistance of Host (Achnatherum inebrians) by Regulating Leaf Senescence and Photosynthetic Capacity. Journal of Plant Growth Regulation, 2022, 41, 808-817.	5.1	7
3	Fungal Endophytes Help Grasses to Tolerate Sap-Sucking Herbivores Through a Hormone-Signaling System. Journal of Plant Growth Regulation, 2022, 41, 2122-2137.	5.1	8
4	A new bacterial leaf blight disease of oat (<i>Avena sativa</i>) caused by <i>Pantoea agglomerans</i> in China. Plant Pathology, 2022, 71, 470-478.	2.4	9
5	Identification and characterization of <i>Pyrenophora</i> species causing leaf spot on oat (<i>Avena) Tj ETQq1</i>	1 0,78431 2.4	l4 rgBT /Ov€r ₽0
6	Pantoea agglomerans, a seed-borne plant pathogenic bacterium, decreased seed germination, seedling growth and seed quality of oat. European Journal of Plant Pathology, 2022, 162, 667-679.	1.7	3
7	A conceptual framework and an empirical test of complementarity and facilitation with respect to phosphorus uptake by plant species mixtures. Pedosphere, 2022, 32, 317-329.	4.0	5
8	Common mycorrhizal networks asymmetrically improve chickpea N and P acquisition and cause overyielding by a millet/chickpea mixture. Plant and Soil, 2022, 472, 279-293.	3.7	7
9	Quality and nutrition of oat seed as influenced by seed-borne fungal pathogens during storage. Journal of Plant Diseases and Protection, 2022, 129, 243-252.	2.9	3
10	NaCl stress modifies the concentrations of endophytic fungal hyphal and peramine in. Crop and Pasture Science, 2022, 73, 214-221.	1.5	2
11	Inoculation of Barley (Hordeum vulgare) with the Endophyte Epichloë bromicola Affects Plant Growth, and the Microbial Community in Roots and Rhizosphere Soil. Journal of Fungi (Basel,) Tj ETQq1 1 0.784.	31 4 8.ngBT (Overlock 10
12	Photosynthetic responses of oat to leaf blight disease caused by Pantoea agglomerans. Journal of Plant Pathology, 2022, 104, 721-733.	1.2	4
13	Effect of Fungal Endophyte Epichloë bromicola Infection on Cd Tolerance in Wild Barley (Hordeum) Tj ETQq1 1	0.784314 3.5	1 rgBT /Overlo
14	Soil fungal and bacterial communities are altered by the incorporation of leaf litter containing a fungal endophyte. European Journal of Soil Science, 2022, 73, .	3.9	3
15	<i>Diplocarpon mespilicola</i> sp. nov. associated with <i>Entomosporium</i> leaf spot on Hawthorn in China. Plant Disease, 2022, , .	1.4	0
16	Soil biota is decisive for overyielding in intercropping under low phosphorus conditions. Journal of Applied Ecology, 2022, 59, 1804-1814.	4.0	5
17	Vertically Transmitted Epichloë Systemic Endophyte Enhances Drought Tolerance of Achnatherum inebrians Host Plants through Promoting Photosynthesis and Biomass Accumulation. Journal of Fungi (Basel, Switzerland), 2022, 8, 512.	3.5	6
18	First Report of Seedling Blight of Oat (<i>Avena sativa</i>) Caused by <i>Microdochium nivale</i> in China. Plant Disease, 2021, 105, 704-704.	1.4	2

#	Article	IF	CITATIONS
19	First Report of Leaf Spot Caused by <i>Alternaria alternata</i> on Italian Ryegrass (<i>Lolium) Tj ETQq1 1 0.7843</i>	14.rgBT /(1.4	Dvgrlock 10 I
20	A foliar Epichloë endophyte and soil moisture modified belowground arbuscular mycorrhizal fungal biodiversity associated with Achnatherum inebrians. Plant and Soil, 2021, 458, 105-122.	3.7	23
21	Creation of novel barley germplasm usingan <italic>Epichloë</italic> endophyte. Chinese Science Bulletin, 2021, 66, 2608-2617.	0.7	5
22	Fungal endophyte Epichloë bromicola infection regulates anatomical changes to account for salt stress tolerance in wild barley (Hordeum brevisubulatum). Plant and Soil, 2021, 461, 533-546.	3.7	30
23	First Report of Ergot (Claviceps purpurea) on Drunken Horse Grass (Achnatherum inebrians) in China. Plant Disease, 2021, , .	1.4	0
24	Gene analysis reveals that leaf litter from Epichloë endophyte-infected perennial ryegrass alters diversity and abundance of soil microbes involved in nitrification and denitrification. Soil Biology and Biochemistry, 2021, 154, 108123.	8.8	13
25	Complete chloroplast genome and phylogenetic analysis of a wild grass, Hordeum roshevitzii Bowden. Mitochondrial DNA Part B: Resources, 2021, 6, 1219-1221.	0.4	1
26	First Report of Leaf Spot Disease on <i>Fagopyrum esculentum</i> Caused by <i>Bipolaris zeae</i> in China. Plant Disease, 2021, 105, 3301.	1.4	2
27	Complementarity and facilitation with respect to P acquisition do not drive overyielding by intercropping. Field Crops Research, 2021, 265, 108127.	5.1	6
28	Complete chloroplast genomes of Achnatherum inebrians and comparative analyses with related species from Poaceae. FEBS Open Bio, 2021, 11, 1704-1718.	2.3	7
29	Identification of <i>Colletotrichum liriopes</i> as the Causative Agent of Anthracnose in Buckwheat (<i>Fagopyrum esculentum</i>) in China. Plant Disease, 2021, 105, 3741.	1.4	1
30	Response of sheep rumen fermentation and microbial communities to feed infected with the endophyte Epichloë gansuensis as evaluated with rumen-simulating technology. Journal of Microbiology, 2021, 59, 718-728.	2.8	4
31	Influence of Interactions between Nitrogen, Phosphorus Supply and Epichloёbromicola on Growth of Wild Barley (Hordeum brevisubulatum). Journal of Fungi (Basel, Switzerland), 2021, 7, 615.	3.5	2
32	Exogenous spermidine enhances Epichloë endophyte-induced tolerance to NaCl stress in wild barley (Hordeum brevisubulatum). Plant and Soil, 2021, 468, 77-95.	3.7	6
33	First Report of Leaf Spot Disease Caused by <i>Stemphylium vesicarium</i> on <i>Fagopyrum esculentum</i> in China. Plant Disease, 2021, 105, 2242.	1.4	1
34	Characterization of the complete chloroplast genome of <i>Hordeum jubatum</i> (Poaceae: Pooideae:) Tj ETQq0	0.0.rgBT 0.4	/Overlock 10

35	Synergism between calcium nitrate applications and fungal endophytes to increase sugar concentration in <i>Festuca sinensis</i> under cold stress. PeerJ, 2021, 9, e10568.	2.0	10
36	Interactive Effects of Epichloë Endophyte, Dormancy-Breaking Treatments and Geographic Origin on Seed Germination of Achnatherum inebrians. Microorganisms, 2021, 9, 2183.	3.6	9

#	Article	IF	CITATIONS
37	Effects of Aqueous Extracts of Endophyte-Infected Grass Achnatherum inebrians on Growth and Development of Pea Aphid Acyrthosiphon pisum. Insects, 2021, 12, 944.	2.2	2
38	Elucidating the Molecular Mechanisms by which Seed-Borne Endophytic Fungi, Epichloë gansuensis, Increases the Tolerance of Achnatherum inebrians to NaCl Stress. International Journal of Molecular Sciences, 2021, 22, 13191.	4.1	7
39	Effects of Oat Varieties and Growing Locations on Seed-Borne Fungal Communities. Frontiers in Microbiology, 2021, 12, 724999.	3.5	2
40	First Report of Oat (Avena sativa) Root Rot Caused by Fusarium proliferatum in China. Plant Disease, 2020, 104, 993-993.	1.4	0
41	Effects of <i>Epichloë</i> endophyte infection on growth, physiological properties and seed germination of wild barley under saline conditions. Journal of Agronomy and Crop Science, 2020, 206, 43-51.	3.5	22
42	Yield gain, complementarity and competitive dominance in intercropping in China: A meta-analysis of drivers of yield gain using additive partitioning. European Journal of Agronomy, 2020, 113, 125987.	4.1	88
43	First Report of Epicoccum layuense Causing Brown Leaf Spot on Oat (Avena sativa) in Northwestern China. Plant Disease, 2020, 104, 990-990.	1.4	4
44	Segregation of Lolium perenne into a subpopulation with high infection by endophyte Epichloë festucae var. lolii results in improved agronomic performance. Plant and Soil, 2020, 446, 595-612.	3.7	8
45	Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crops Research, 2020, 246, 107661.	5.1	136
46	Phylogenetic relationship and taxonomy of a hybrid Epichloë species symbiotic with Festuca sinensis. Mycological Progress, 2020, 19, 1069-1081.	1.4	12
47	Syndromes of production in intercropping impact yield gains. Nature Plants, 2020, 6, 653-660.	9.3	259
48	Characterization of <i>Pyrenophora</i> Species Causing Brown Leaf Spot on Italian Ryegrass (<i>Lolium multiflorum</i>) in Southwestern China. Plant Disease, 2020, 104, 1900-1907.	1.4	5
49	Role of <i>Epichloë</i> Endophytes in Improving Host Grass Resistance Ability and Soil Properties. Journal of Agricultural and Food Chemistry, 2020, 68, 6944-6955.	5.2	30
50	Does Epichloë Endophyte Enhance Host Tolerance to Root Hemiparasite?. Microbial Ecology, 2020, 82, 35-48.	2.8	5
51	A toxic grass Achnatherum inebrians serves as a diversity refuge for the soil fungal community in rangelands of northern China. Plant and Soil, 2020, 448, 425-438.	3.7	7
52	Characterization and Pathogenicity of <i>Colletotrichum</i> Species on <i>Philodendron tatei</i> cv. Congo in Gansu Province, China. Plant Disease, 2020, 104, 2571-2584.	1.4	5
53	Fungal Endophyte Improves Survival of Lolium perenne in Low Fertility Soils by Increasing Root Growth, Metabolic Activity and Absorption of Nutrients. Plant and Soil, 2020, 452, 185-206.	3.7	37
54	First Report of <i>Alternaria alternata</i> Causing Leaf Spot on Oat (<i>Avena sativa</i>) in China. Plant Disease, 2020, 104, 1544.	1.4	8

#	ARTICLE	IF	CITATIONS
55	Occurrence of Verticillium Wilt Caused by <i>Verticillium dahliae</i> on Licorice (<i>Glycyrrhiza) Tj ETQq1 1 0.784</i>	-314 rgBT 1.4	/Overlock
56	First Report of Anthracnose Caused by <i>Colletotrichum americae-borealis</i> on Greenhouse-Grown Licorice in China. Plant Disease, 2020, 104, 1559-1559.	1.4	3
57	First Report of Dodder (<i>Cuscuta campestris</i>) Parasitizing Licorice (<i>Glycyrrhiza uralensis</i>) in China. Plant Disease, 2020, 104, 295.	1.4	1
58	Testing for complementarity in phosphorus resource use by mixtures of crop species. Plant and Soil, 2019, 439, 163-177.	3.7	20
59	Characterization, Phylogenetic Analyses, and Pathogenicity of <i>Colletotrichum</i> Species on <i>Morus alba</i> in Sichuan Province, China. Plant Disease, 2019, 103, 2624-2633.	1.4	19
60	Disturbance by grazing and the presence of rodents facilitates the dominance of the unpalatable grass Achnatherum inebrians in alpine meadows of northern China. Rangeland Journal, 2019, 41, 301.	0.9	7
61	Effect of the fungal endophyte Epichloë bromicola on polyamines in wild barley (Hordeum) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Th
62	Effect of Epichloë gansuensis endophyte on the activity of enzymes of nitrogen metabolism, nitrogen use efficiency and photosynthetic ability of Achnatherum inebrians under various NaCl concentrations. Plant and Soil, 2019, 435, 57-68.	3.7	25
63	Identification of <i>Epichloë</i> endophytes associated with wild barley (<i>Hordeum) Tj ETQq1 1 0.784314 rgB Agricultural Research, 2019, 62, 131-149.</i>	T /Overloc 1.6	ck 10 Tf 50 13
64	A Brief History of Endophyte Detection Techniques in Grasses. Sustainable Agriculture Research, 2019, 8, 66.	0.3	4
65	Infection by the fungal endophyte Epichloë bromicola enhances the tolerance of wild barley (Hordeum brevisubulatum) to salt and alkali stresses. Plant and Soil, 2018, 428, 353-370.	3.7	48
66	Role of <i>Epichloë</i> Endophytes in Defense Responses of Cool-Season Grasses to Pathogens: A Review. Plant Disease, 2018, 102, 2061-2073.	1.4	56
67	Glucose-6-phosphate dehydrogenase plays a vital role in Achnatherum inebrians plants host to Epichloë gansuensis by improving growth under nitrogen deficiency. Plant and Soil, 2018, 430, 37-48.	3.7	27
68	Pu-erh Tea Protects the Nervous System by Inhibiting the Expression of Metabotropic Glutamate Receptor 5. Molecular Neurobiology, 2017, 54, 5286-5299.	4.0	28
69	Toxin-producing <i>Epichloë bromicola</i> strains symbiotic with the forage grass <i>Elymus dahuricus</i> in China. Mycologia, 2017, 109, 847-859.	1.9	12
70	Effects of feeding drunken horse grass infected with Epichloë gansuensis endophyte on animal performance, clinical symptoms and physiological parameters in sheep. BMC Veterinary Research, 2017, 13, 223.	1.9	32
71	Genome-Wide Analysis of Codon Usage Bias in Epichloë festucae. International Journal of Molecular Sciences, 2016, 17, 1138.	4.1	40
72	Shift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depleted. Scientific Reports, 2016, 6, 18663.	3.3	55

#	Article	IF	CITATIONS
73	Modification of Susceptible and Toxic Herbs on Grassland Disease. Scientific Reports, 2016, 6, 30635.	3.3	4
74	Transcriptomic analyses giving insights into molecular regulation mechanisms involved in cold tolerance by Epichloë endophyte in seed germination of Achnatherum inebrians. Plant Growth Regulation, 2016, 80, 367-375.	3.4	51
75	A toxic endophyte-infected grass helps reverse degradation and loss of biodiversity of over-grazed grasslands in northwest China. Scientific Reports, 2015, 5, 18527.	3.3	21
76	Antifungal activity and phytochemical investigation of the asexual endophyte of Epichloë sp. from Festuca sinensis. Science China Life Sciences, 2015, 58, 821-826.	4.9	30
77	Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat. Scientific Reports, 2015, 5, 8122.	3.3	36
78	Effects of the hemiparasitic plant <i>Pedicularis kansuensis</i> on plant community structure in a degraded grassland. Ecological Research, 2015, 30, 507-515.	1.5	27
79	Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians). Fungal Ecology, 2015, 16, 26-33.	1.6	59
80	Does endophyte symbiosis resist allelopathic effects of an invasive plant in degraded grassland?. Fungal Ecology, 2015, 17, 114-125.	1.6	16
81	Effects of cold shocked Epichloë infected Festuca sinensis on ergot alkaloid accumulation. Fungal Ecology, 2015, 14, 99-104.	1.6	35
82	Chemical composition and antifungal activity of the volatile oil from Epichloë gansuensis, endophyte-infected and non-infected Achnatherum inebrians. Science China Life Sciences, 2015, 58, 512-514.	4.9	12
83	Two distinct <i>Epichloë</i> species symbiotic with <i>Achnatherum inebrians</i> , drunken horse grass. Mycologia, 2015, 107, 863-873.	1.9	62
84	Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach. Antonie Van Leeuwenhoek, 2015, 108, 835-850.	1.7	18
85	An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley (Hordeum) Tj ETQq1 1 0.78	4314.rgBT	/Overlock 10
86	An asexual Epichloë endophyte enhances waterlogging tolerance of Hordeum brevisubulatum. Fungal Ecology, 2015, 13, 44-52.	1.6	62
87	The Dynamic Process of Interspecific Interactions of Competitive Nitrogen Capture between Intercropped Wheat (Triticum aestivum L.) and Faba Bean (Vicia faba L.). PLoS ONE, 2014, 9, e115804.	2.5	23
88	Cytotoxic Effect of Ergot Alkaloids in <i>Achnatherum inebrians</i> Infected by the <i>Neotyphodium gansuense</i> Endophyte. Journal of Agricultural and Food Chemistry, 2014, 62, 7419-7422.	5.2	27
89	Combination of doxorubicin-based chemotherapy and polyethylenimine/p53 gene therapy for the treatment of lung cancer using porous PLGA microparticles. Colloids and Surfaces B: Biointerfaces, 2014, 122, 498-504.	5.0	43
90	Effects of seed hydropriming on growth of Festuca sinensis infected with Neotyphodium endophyte. Fungal Ecology, 2013, 6, 83-91.	1.6	30

#	Article	IF	CITATIONS
91	Plant-Symbiotic Fungi as Chemical Engineers: Multi-Genome Analysis of the Clavicipitaceae Reveals Dynamics of Alkaloid Loci. PLoS Genetics, 2013, 9, e1003323.	3.5	344
92	Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte. Science China Life Sciences, 2012, 55, 793-799.	4.9	47
93	Effects of cutting frequency and height on alkaloid production in endophyte-infected drunken horse grass (Achnatherum inebrians). Science China Life Sciences, 2011, 54, 567-571.	4.9	22
94	Effects of cadmium stress on seed germination, seedling growth and antioxidative enzymes in Achnatherum inebrians plants infected with a Neotyphodium endophyte. Plant Growth Regulation, 2010, 60, 91-97.	3.4	72
95	Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. Journal of Hazardous Materials, 2010, 175, 703-709.	12.4	129
96	Effect of the endophyte Neotyphodium lolii on susceptibility and host physiological response of perennial ryegrass to fungal pathogens. European Journal of Plant Pathology, 2008, 122, 593-602.	1.7	72
97	Root-invading fungi of milk vetch on the Loess Plateau, China. Agriculture, Ecosystems and Environment, 2008, 124, 51-59.	5.3	9
98	Biological and physiological characteristics of Neotyphodium gansuense symbiotic with Achnatherum inebrians. Microbiological Research, 2008, 163, 431-440.	5.3	23
99	New Neotyphodium endophyte species from the grass tribes Stipeae and Meliceae. Mycologia, 2007, 99, 895-905.	1.9	43
100	New Neotyphodium endophyte species from the grass tribes Stipeae and Meliceae. Mycologia, 2007, 99, 895-905.	1.9	47
101	Disease and pest resistance of endophyte infected and non-infected drunken horse grass. Grassland Research and Practice Series, 0, 13, 111-114.	0.0	5
102	Transcriptomic analysis of pea aphids (<i>Acyrthosiphon pisum</i>) treated with plant extracts from endophyteâ€containing drunken horse grass. Journal of Applied Entomology, 0, , .	1.8	0
103	Effects of <i>Achnatherum inebrians</i> ecotypes and endophyte status on plant growth, plant nutrient, soil fertility and soil microbial community. Soil Science Society of America Journal, 0, , .	2.2	1