
Yung Jin Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3717560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Importance of interface engineering between the hole transport layer and the indium-tin-oxide electrode for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2021, 9, 15394-15403.	10.3	10
2	Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592, 381-385.	27.8	2,095
3	Highly Stable Bulk Perovskite for Blue LEDs with Anion-Exchange Method. Nano Letters, 2021, 21, 3473-3479.	9.1	36
4	Inverted Polymer Solar Cells with Annealingâ€Free Solutionâ€Processable NiO. Small, 2021, 17, e2101729.	10.0	22
5	A recent advances of blue perovskite light emitting diodes for next generation displays. Journal of Semiconductors, 2021, 42, 101608.	3.7	7
6	Origin of the luminescence spectra width in perovskite nanocrystals with surface passivation. Nanoscale, 2020, 12, 21695-21702.	5.6	16
7	High colloidal stability ZnO nanoparticles independent on solvent polarity and their application in polymer solar cells. Scientific Reports, 2020, 10, 18055.	3.3	25
8	Defect-Induced <i>in Situ</i> Atomic Doping in Transition Metal Dichalcogenides via Liquid-Phase Synthesis toward Efficient Electrochemical Activity. ACS Nano, 2020, 14, 17114-17124.	14.6	26
9	Dichroic Sb 2 O 3 /Ag/Sb 2 O 3 Electrodes for Colorful Semitransparent Organic Solar Cells. Solar Rrl, 2020, 4, 2000201.	5.8	15
10	Functionalized PFN-X (X = Cl, Br, or I) for Balanced Charge Carriers of Highly Efficient Blue Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 35740-35747.	8.0	31
11	High-Performance Perovskite Light-Emitting Diodes with Surface Passivation of CsPbBr <i>_x</i> I _{3–<i>x</i>} Nanocrystals via Antisolvent-Triggered Ion-Exchange. ACS Applied Materials & Interfaces, 2020, 12, 31582-31590.	8.0	22
12	Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells. Joule, 2019, 3, 2179-2192.	24.0	1,228
13	Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. Journal of Materials Chemistry A, 2019, 7, 1107-1114.	10.3	100
14	Vivid and Fully Saturated Blue Light-Emitting Diodes Based on Ligand-Modified Halide Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 23401-23409.	8.0	60
15	Synergistic combination of amorphous indium oxide with tantalum pentoxide for efficient electron transport in low-power electronics. Journal of Materials Chemistry C, 2019, 7, 4559-4566.	5.5	6
16	Conjugated Polyelectrolytes Bearing Various Ion Densities: Spontaneous Dipole Generation, Polingâ&nduced Dipole Alignment, and Interfacial Energy Barrier Control for Optoelectronic Device Applications. Advanced Materials, 2018, 30, e1706034.	21.0	12
17	Non-halogenated diphenyl-chalcogenide solvent processing additives for high-performance polymer bulk-heterojunction solar cells. RSC Advances, 2018, 8, 39777-39783.	3.6	6
18	The introduction of a perovskite seed layer for high performance perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 20138-20144.	10.3	12

Yung Jin Yoon

#	Article	IF	CITATIONS
19	Formamidinium-based planar heterojunction perovskite solar cells with alkali carbonate-doped zinc oxide layer. RSC Advances, 2018, 8, 24110-24115.	3.6	10
20	Implementation of Lowâ€Power Electronic Devices Using Solutionâ€Processed Tantalum Pentoxide Dielectric. Advanced Functional Materials, 2018, 28, 1704215.	14.9	17
21	Polyelectrolytes: Improved Performance in nâ€Type Organic Fieldâ€Effect Transistors via Polyelectrolyteâ€Mediated Interfacial Doping (Adv. Electron. Mater. 10/2017). Advanced Electronic Materials, 2017, 3, .	5.1	0
22	Improved Performance in nâ€Type Organic Fieldâ€Effect Transistors via Polyelectrolyteâ€Mediated Interfacial Doping. Advanced Electronic Materials, 2017, 3, 1700184.	5.1	20
23	Fluorine Functionalized Graphene Nano Platelets for Highly Stable Inverted Perovskite Solar Cells. Nano Letters, 2017, 17, 6385-6390.	9.1	106
24	Peroptronic devices: perovskite-based light-emitting solar cells. Energy and Environmental Science, 2017, 10, 1950-1957.	30.8	41
25	Dithieno[2,3â€d:2',3'â€d']benzo[1,2â€b:4,5â€b']dithiophene (DTBDAT)â€based copolymers for highâ€performa organic solar cells. Journal of Polymer Science Part A, 2016, 54, 3182-3192.	nce 2.3	8
26	Solar Cells: Investigation of Charge Carrier Behavior in High Performance Ternary Blend Polymer Solar Cells (Adv. Energy Mater. 19/2016). Advanced Energy Materials, 2016, 6, .	19.5	0
27	Ternary Halide Perovskites for Highly Efficient Solution-Processed Hybrid Solar Cells. ACS Energy Letters, 2016, 1, 712-718.	17.4	24
28	Investigation of Charge Carrier Behavior in High Performance Ternary Blend Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600637.	19.5	85
29	Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells. Scientific Reports, 2016, 6, 36608.	3.3	11
30	High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers. Nano Letters, 2015, 15, 7691-7696.	9.1	198