Ayumu Taguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3717467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SRGN-Triggered Aggressive and Immunosuppressive Phenotype in a Subset of TTF-1–Negative Lung Adenocarcinomas. Journal of the National Cancer Institute, 2022, 114, 290-301.	6.3	18
2	Mutational Activation of the NRF2 Pathway Upregulates Kynureninase Resulting in Tumor Immunosuppression and Poor Outcome in Lung Adenocarcinoma. Cancers, 2022, 14, 2543.	3.7	16
3	Inhibition of heat shock protein 90 destabilizes receptor tyrosine kinase ROR1 in lung adenocarcinoma. Cancer Science, 2021, 112, 1225-1234.	3.9	15
4	Conditional <i>Ror1</i> knockout reveals crucial involvement in lung adenocarcinoma development and identifies novel HIFâ€1α regulator. Cancer Science, 2021, 112, 1614-1623.	3.9	8
5	Identification of Blood-Based Biomarkers for the Prediction of the Response to Neoadjuvant Chemoradiation in Rectal Cancer. Cancers, 2021, 13, 3642.	3.7	6
6	The Long Noncoding RNA CCAT2 Induces Chromosomal Instability Through BOP1-AURKB Signaling. Gastroenterology, 2020, 159, 2146-2162.e33.	1.3	75
7	Novel urinary protein biomarker panel for early diagnosis of gastric cancer. British Journal of Cancer, 2020, 123, 1656-1664.	6.4	42
8	A Promising CPS1 Inhibitor Keeping Ammonia from Fueling Cancer. Cell Chemical Biology, 2020, 27, 253-254.	5.2	6
9	A Plasma-Derived Protein-Metabolite Multiplexed Panel for Early-Stage Pancreatic Cancer. Journal of the National Cancer Institute, 2019, 111, 372-379.	6.3	79
10	Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature, 2019, 568, 410-414.	27.8	129
11	Harnessing Immune Response to Malignant Lung Nodules. Promise and Challenges. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1184-1186.	5.6	0
12	Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity. Nature Communications, 2019, 10, 254.	12.8	120
13	HIV Infection and Circulating Levels of Prosurfactant Protein B and Surfactant Protein D. Journal of Infectious Diseases, 2018, 217, 413-417.	4.0	8
14	Assessment of Lung Cancer Risk on the Basis of a Biomarker Panel of Circulating Proteins. JAMA Oncology, 2018, 4, e182078.	7.1	109
15	A Statistical Method for Detecting Differentially Expressed SNVs Based on Next-Generation RNA-Seq Data. Biometrics, 2017, 73, 42-51.	1.4	2
16	Role of CPS1 in Cell Growth, Metabolism, and Prognosis in LKB1-Inactivated Lung Adenocarcinoma. Journal of the National Cancer Institute, 2017, 109, djw231.	6.3	69
17	Sequential Validation of Blood-Based Protein Biomarker Candidates for Early-Stage Pancreatic Cancer. Journal of the National Cancer Institute, 2017, 109, djw266.	6.3	116
18	MCAM Mediates Chemoresistance in Small-Cell Lung Cancer via the PI3K/AKT/SOX2 Signaling Pathway. Cancer Research, 2017, 77, 4414-4425.	0.9	85

Ауими Тадисні

#	Article	IF	CITATIONS
19	Predictive and Prognostic Molecular Biomarkers for Response to Neoadjuvant Chemoradiation in Rectal Cancer. International Journal of Molecular Sciences, 2017, 18, 573.	4.1	130
20	Plasma-derived extracellular vesicle proteins as a source of biomarkers for lung adenocarcinoma. Oncotarget, 2017, 8, 95466-95480.	1.8	60
21	Switching Roles of TGF-β in Cancer Development: Implications for Therapeutic Target and Biomarker Studies. Journal of Clinical Medicine, 2016, 5, 109.	2.4	30
22	Serum Glycans as Risk Markers for Non–Small Cell Lung Cancer. Cancer Prevention Research, 2016, 9, 317-323.	1.5	15
23	Allele-Specific Reprogramming of Cancer Metabolism by the Long Non-coding RNA CCAT2. Molecular Cell, 2016, 61, 520-534.	9.7	142
24	Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1555-64.	7.1	174
25	Deciphering the complexity of the cancer proteome for diagnostic applications. Expert Review of Molecular Diagnostics, 2016, 16, 399-405.	3.1	5
26	Systemic Metabolomic Changes in Blood Samples of Lung Cancer Patients Identified by Gas Chromatography Time-of-Flight Mass Spectrometry. Metabolites, 2015, 5, 192-210.	2.9	69
27	Molecular Portraits of Epithelial, Mesenchymal, and Hybrid States in Lung Adenocarcinoma and Their Relevance to Survival. Cancer Research, 2015, 75, 1789-1800.	0.9	179
28	Carboxylesterase 2 as a Determinant of Response to Irinotecan and Neoadjuvant FOLFIRINOX Therapy in Pancreatic Ductal Adenocarcinoma. Journal of the National Cancer Institute, 2015, 107, .	6.3	72
29	MAPRE1 as a Plasma Biomarker for Early-Stage Colorectal Cancer and Adenomas. Cancer Prevention Research, 2015, 8, 1112-1119.	1.5	25
30	Diacetylspermine Is a Novel Prediagnostic Serum Biomarker for Non–Small-Cell Lung Cancer and Has Additive Performance With Pro-Surfactant Protein B. Journal of Clinical Oncology, 2015, 33, 3880-3886.	1.6	88
31	Proteomic signatures associated with p53 mutational status in lung adenocarcinoma. Proteomics, 2014, 14, 2750-2759.	2.2	20
32	Mouse to Human Blood-Based Cancer Biomarker Discovery Strategies. Cold Spring Harbor Protocols, 2014, 2014, pdb.top078808.	0.3	5
33	A Search for Novel Cancer/Testis Antigens in Lung Cancer Identifies VCX/Y Genes, Expanding the Repertoire of Potential Immunotherapeutic Targets. Cancer Research, 2014, 74, 4694-4705.	0.9	40
34	Unleashing the Power of Proteomics to Develop Blood-Based Cancer Markers. Clinical Chemistry, 2013, 59, 119-126.	3.2	52
35	Circulating Pro-Surfactant Protein B as a Risk Biomarker for Lung Cancer. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 1756-1761.	2.5	24
36	Pro–Surfactant Protein B As a Biomarker for Lung Cancer Prediction. Journal of Clinical Oncology, 2013, 31, 4536-4543.	1.6	73

Ауими Тадисні

#	Article	IF	CITATIONS
37	Enrichment strategies in glycomicsâ€based lung cancer biomarker development. Proteomics - Clinical Applications, 2013, 7, 664-676.	1.6	34
38	CDKN2A/p16 Inactivation Mechanisms and Their Relationship to Smoke Exposure and Molecular Features in Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2013, 8, 1378-1388.	1.1	71
39	<i>miR-375</i> Is Activated by ASH1 and Inhibits YAP1 in a Lineage-Dependent Manner in Lung Cancer. Cancer Research, 2011, 71, 6165-6173.	0.9	124
40	Integrated mass spectrometry–based analysis of plasma glycoproteins and their glycan modifications. Nature Protocols, 2011, 6, 253-269.	12.0	41
41	Lung Cancer Signatures in Plasma Based on Proteome Profiling of Mouse Tumor Models. Cancer Cell, 2011, 20, 289-299.	16.8	158
42	Application of Proteomics to Cancer Early Detection. Cancer Journal (Sudbury, Mass), 2011, 17, 423-428.	2.0	47
43	The grand challenge to decipher the cancer proteome. Nature Reviews Cancer, 2010, 10, 652-660.	28.4	117
44	Small-bowel obstruction: diagnostic comparison between double-balloon endoscopy and fluoroscopic enteroclysis, and the outcome of enteroscopic treatment. Gastrointestinal Endoscopy, 2009, 69, 84-93.	1.0	79
45	Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11â€21 in human lung cancer. Genes Chromosomes and Cancer, 2008, 47, 810-818.	2.8	81
46	ldentification of Hypoxia-Inducible Factor-1α as a Novel Target for <i>miR-17-92</i> MicroRNA Cluster. Cancer Research, 2008, 68, 5540-5545.	0.9	290
47	Lineage-Specific Dependency of Lung Adenocarcinomas on the Lung Development Regulator TTF-1. Cancer Research, 2007, 67, 6007-6011.	0.9	200
48	Rugal hyperplastic gastritis increases the risk of gastric carcinoma, especially diffuse and p53-independent subtypes. European Journal of Gastroenterology and Hepatology, 2007, 19, 561-566.	1.6	5
49	<i>MDM2</i> Promoter Polymorphism Is Associated With Both an Increased Susceptibility to Gastric Carcinoma and Poor Prognosis. Journal of Clinical Oncology, 2006, 24, 4434-4440.	1.6	122
50	Severity of atrophic gastritis related to antiparietal cell antibody and gastric carcinogenesis, including p53 mutations. Journal of Gastroenterology and Hepatology (Australia), 2006, 21, 545-551.	2.8	7
51	Interleukin-8 gene polymorphism associated with susceptibility to non-cardia gastric carcinoma with microsatellite instability. Journal of Gastroenterology and Hepatology (Australia), 2006, 21, 1129-1135.	2.8	32
52	<i>Interleukin-8</i> Promoter Polymorphism Increases the Risk of Atrophic Gastritis and Gastric Cancer in Japan. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 2487-2493.	2.5	235
53	Endoscopic resection of Peutz-Jeghers polyps throughout the small intestine at double-balloon enteroscopy without laparotomy. Gastrointestinal Endoscopy, 2005, 61, 140-147.	1.0	178
54	The association between tumour necrosis factor-α gene polymorphism and the susceptibility to rugal hyperplastic gastritis and gastric carcinoma. European Journal of Gastroenterology and Hepatology, 2004, 16, 693-700.	1.6	30

#	Article	IF	CITATIONS
55	Cancer proteomics. , 0, , 52-57.		0