
Honglie Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3717106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New Journal of Chemistry, 2012, 36, 1385.	2.8	186
2	Triggering the Continuous Growth of Graphene Toward Millimeter‣ized Grains. Advanced Functional Materials, 2013, 23, 198-203.	14.9	129
3	Structural and optical properties of Cu2SnS3 and Cu3SnS4 thin films by successive ionic layer adsorption and reaction. Journal of Materials Science: Materials in Electronics, 2013, 24, 1490-1494.	2.2	84
4	High efficiency multi-crystalline silicon solar cell with inverted pyramid nanostructure. Solar Energy, 2017, 142, 91-96.	6.1	83
5	Novel Cu2ZnSnS4/Pt/g-C3N4 heterojunction photocatalyst with straddling band configuration for enhanced solar to fuel conversion. Applied Catalysis B: Environmental, 2020, 277, 119239.	20.2	79
6	Hydrothermal synthesis of Fe3O4/TiO2/g-C3N4: Advanced photocatalytic application. Applied Surface Science, 2019, 488, 887-895.	6.1	67
7	Studies of Z-scheme WO3-TiO2/Cu2ZnSnS4 ternary nanocomposite with enhanced CO2 photoreduction under visible light irradiation. Journal of CO2 Utilization, 2020, 37, 260-271.	6.8	61
8	Preparation and properties of SnS film grown by two-stage process. Applied Surface Science, 2011, 257, 4901-4905.	6.1	51
9	High-Efficient Solar Cells by the Ag/Cu-Assisted Chemical Etching Process on Diamond-Wire-Sawn Multicrystalline Silicon. IEEE Journal of Photovoltaics, 2017, 7, 153-156.	2.5	39
10	Direct growth of nitrogen-doped graphene films on glass by plasma-assisted hot filament CVD for enhanced electricity generation. Journal of Materials Chemistry A, 2019, 7, 12038-12049.	10.3	36
11	Evolution of Structural and Electrical Properties of Carbon Films from Amorphous Carbon to Nanocrystalline Graphene on Quartz Glass by HFCVD. ACS Applied Materials & Interfaces, 2018, 10, 17427-17436.	8.0	35
12	A 4.92% efficiency Cu ₂ ZnSnS ₄ solar cell from nanoparticle ink and molecular solution. RSC Advances, 2016, 6, 54049-54053.	3.6	33
13	Cost-effective fabrication of polycrystalline TiO2 with tunable n/p response for selective hydrogen monitoring. Sensors and Actuators B: Chemical, 2018, 274, 10-21.	7.8	29
14	Superiority of random inverted nanopyramid as efficient light trapping structure in ultrathin flexible c-Si solar cell. Renewable Energy, 2019, 133, 883-892.	8.9	29
15	Large-scale black multi-crystalline silicon solar cell with conversion efficiency over 18Â%. Applied Physics A: Materials Science and Processing, 2014, 116, 683-688.	2.3	28
16	Sulfurization time effects on the growth of Cu2ZnSnS4 thin films by solution method. Journal of Materials Science: Materials in Electronics, 2013, 24, 2667-2671.	2.2	27
17	Formation of α-Si1â^'xCx:H and nc-SiC films grown by HWCVD under different process pressure. Applied Surface Science, 2011, 258, 999-1003.	6.1	26
18	Optical and Electrical Properties of Cu2ZnSnS4 Film Prepared by Sulfurization Method. Journal of Electronic Materials, 2012, 41, 2204-2209.	2.2	26

#	Article	IF	CITATIONS
19	Rapid synthesis of hollow CTS nanoparticles using microwave irradiation. Materials Letters, 2013, 111, 5-8.	2.6	26
20	Formation mechanism of inverted pyramid from sub-micro to micro scale on c-Si surface by metal assisted chemical etching temperature. Applied Surface Science, 2018, 455, 283-294.	6.1	26
21	Solvent Effects on Fluorescence Properties of Carbon Dots: Implications for Multicolor Imaging. ACS Omega, 2021, 6, 26499-26508.	3.5	26
22	Bifacial p-Type PERC Solar Cell with Efficiency over 22% Using Laser Doped Selective Emitter. Energies, 2020, 13, 1388.	3.1	25
23	Potential of quasi-inverted pyramid with both efficient light trapping and sufficient wettability for ultrathin c -Si/PEDOT:PSS hybrid solar cells. Solar Energy Materials and Solar Cells, 2017, 169, 226-235.	6.2	24
24	Growth mechanism of Ge-doped CZTSSe thin film by sputtering method and solar cells. Physical Chemistry Chemical Physics, 2016, 18, 28829-28834.	2.8	23
25	Influence of Cd source concentration on photo-current response property of CdxZn1â^'xS film prepared by chemical bath deposition. Ceramics International, 2016, 42, 2466-2471.	4.8	23
26	Investigation of substrate temperature and cooling method on the properties of amorphous carbon films by hot-filament CVD with acetylene. Carbon, 2017, 117, 322-330.	10.3	23
27	Enhanced visible light-driven photodegradation of rhodamine B by Ti3+ self-doped TiO2@Ag nanoparticles prepared using Ti vapor annealing. Journal of Materials Science, 2020, 55, 701-712.	3.7	23
28	Solvothermal Synthesis of p-type Cu2ZnSnS4-Based Nanocrystals and Photocatalytic Properties for Degradation of Methylene Blue. Catalysis Letters, 2017, 147, 1844-1850.	2.6	22
29	Cu-assisted chemical etching of bulk c-Si: A rapid and novel method to obtain 45‴μm ultrathin flexible c-Si solar cells with asymmetric front and back light trapping structures. Solar Energy, 2018, 170, 263-272.	6.1	22
30	Synthesis of Cu2ZnSnS4 films from sequentially electrodeposited Cu–Sn–Zn precursors and their structural and optical properties. Journal of Materials Science: Materials in Electronics, 2013, 24, 4578-4584.	2.2	21
31	Investigation of optical and mechanical performance of inverted pyramid based ultrathin flexible c-Si solar cell for potential application on curved surface. Applied Surface Science, 2020, 504, 144588.	6.1	21
32	Enhanced acetone sensing performance in black TiO2 by Ag modification. Journal of Materials Science, 2020, 55, 10399-10411.	3.7	20
33	Efficient light trapping of quasi-inverted nanopyramids in ultrathin c-Si through a cost-effective wet chemical method. RSC Advances, 2016, 6, 96686-96692.	3.6	19
34	Growth of ideal amorphous carbon films at low temperature by e-beam evaporation. RSC Advances, 2016, 6, 42353-42360.	3.6	19
35	Facile in-situ fabrication of TiO2-Cu2ZnSnS4 hybrid nanocomposites and their photoreduction of CO2 to CO/CH4 generation. Applied Surface Science, 2020, 529, 147005.	6.1	19
36	The visible light-driven highly efficient photocatalytic properties of Cu ₂ ZnSnS ₄ nanoparticles synthesized by a hydrothermal method. New Journal of Chemistry, 2021, 45, 1743-1752.	2.8	19

#	Article	IF	CITATIONS
37	Effect of selenization temperature on the properties of Sb2Se3 thin films and solar cells by two-step method. Journal of Materials Science: Materials in Electronics, 2019, 30, 19871-19879.	2.2	18
38	High-performance MoO _x /n-Si heterojunction NIR photodetector with aluminum oxide as a tunneling passivation interlayer. Nanotechnology, 2021, 32, 275502.	2.6	18
39	Improvement of CZTSSe thin film solar cell by introducing a three-layer structure precursor. Materials Letters, 2016, 172, 90-93.	2.6	17
40	Performance enhancement in Sb doped Cu(InGa)Se 2 thin film solar cell by e-beam evaporation. Applied Surface Science, 2018, 433, 271-278.	6.1	17
41	Study on the properties of a novel shape-stable epoxy resin sealedÂexpanded graphite/paraffin composite PCM and itsÂapplication in buildings. Phase Transitions, 2019, 92, 581-594.	1.3	17
42	Heterostructure Silicon Solar Cells with Enhanced Power Conversion Efficiency Based on Si _{<i>x</i>} /Ni ³⁺ Self-Doped NiO _{<i>x</i>} Passivating Contact. ACS Omega, 2022, 7, 16494-16501.	3.5	17
43	The influence of annealing atmosphere on the phase formation of Cu–Sn–S ternary compound by SILAR method. Journal of Materials Science: Materials in Electronics, 2013, 24, 3195-3198.	2.2	16
44	Effects of sulfur sources on properties of Cu2ZnSnS4 nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	16
45	Influence of Ge layer location on performance of flexible CZTSSe thin film solar cell. Vacuum, 2019, 165, 186-192.	3.5	16
46	In-situ synthesis of mesoporous TiO2-Cu2ZnSnS4 heterostructured nanocomposite for enhanced photocatalytic degradation. Applied Surface Science, 2020, 505, 144540.	6.1	16
47	Effect of sodium doping on crystal growth and band matching of the heterojunction in flexible CZTS solar cells. Journal of Materials Chemistry C, 2021, 9, 17531-17541.	5.5	16
48	Low-cost chemical fabrication of Cu2ZnSnS4 microparticles and film. Journal of Materials Science: Materials in Electronics, 2013, 24, 1813-1817.	2.2	15
49	Influence of solution temperature on the properties of Cu2ZnSnS4 nanoparticles by ultrasound-assisted microwave irradiation. Journal of Materials Science: Materials in Electronics, 2015, 26, 1449-1454.	2.2	15
50	Effects of nano-TiO2 dispersion on thermoelectric properties of Co4Sb11.7Te0.3 composites. Rare Metals, 2012, 31, 43-47.	7.1	14
51	The Impact of Thermal Treatment on Light-Induced Degradation of Multicrystalline Silicon PERC Solar Cell. Energies, 2019, 12, 416.	3.1	14
52	Flexible CZTSSe thin film solar cells fabricated at low temperature with relieved residual stress by Sb incorporation. Ceramics International, 2020, 46, 1982-1989.	4.8	14
53	Effect of substrate temperature and post-annealing on the properties of CIGS thin films deposited using e-beam evaporation. Journal Physics D: Applied Physics, 2016, 49, 495601.	2.8	13
54	Enhanced etching rate of black silicon by Cu/Ni Co-assisted chemical etching process. Materials Science in Semiconductor Processing, 2018, 88, 250-255.	4.0	13

#	Article	IF	CITATIONS
55	Metal-Free Synthesis of Boron-Doped Graphene Glass by Hot-Filament Chemical Vapor Deposition for Wave Energy Harvesting. ACS Applied Materials & Interfaces, 2020, 12, 2805-2815.	8.0	13
56	Air-Stability Improvement of Solar Selective Absorbers Based on TiW–SiO ₂ Cermet up to 800 °C. ACS Applied Materials & Interfaces, 2021, 13, 14587-14598.	8.0	13
57	Three step fabrication of graphene at low temperature by remote plasma enhanced chemical vapor deposition. RSC Advances, 2013, 3, 9544.	3.6	12
58	Novel and low reflective silicon surface fabricated by Ni-assisted electroless etching and coated with atomic layer deposited Al2O3 film. Applied Physics A: Materials Science and Processing, 2014, 114, 813-817.	2.3	11
59	Performance improvement of flexible CZTSSe thin film solar cell by adding a Ge buffer layer. Materials Letters, 2017, 190, 188-190.	2.6	11
60	Dopant-free random inverted nanopyramid ultrathin c-Si solar cell via low work function metal modified ITO and TiO2 electron transporting layer. Journal of Alloys and Compounds, 2018, 769, 951-960.	5.5	11
61	ZnO:Er, Li film prepared by sol–gel method and its properties of converting both UV and NIR light to visible light. Optical Materials, 2015, 39, 218-223.	3.6	10
62	ZnO/Al2O3/p-Si/Al2O3/CuO heterojunction NIR photodetector with inverted-pyramid light-trapping structure. Journal of Alloys and Compounds, 2021, 874, 159864.	5.5	10
63	Effect of CZTS/CCZTS Stacked Structures Prepared through Split-Cycle on the Performance of Flexible Solar Cells. ACS Applied Energy Materials, 2022, 5, 3668-3676.	5.1	10
64	Cu2ZnSnS4 films by paste coating and their optoelectronic properties. Journal of Materials Science: Materials in Electronics, 2013, 24, 4228-4232.	2.2	9
65	Preparation of high efficiency Cu 2 ZnSn(S,Se) 4 solar cells from novel non-toxic hybrid ink. Journal of Power Sources, 2016, 335, 84-90.	7.8	9
66	Microwave-assisted synthesis and thermoelelectric properties of CoSb3 compounds. Journal of Materials Science: Materials in Electronics, 2012, 23, 2210-2215.	2.2	8
67	Research on the photoresponse current and photosensitive properties of Cu2ZnSnS4 thin film prepared by sulfurization of a sputtered metal precursor. RSC Advances, 2013, 3, 23474.	3.6	8
68	Quaternary co-electrodeposition of the Cu2ZnSnS4 films as potential solar cell absorbers. Journal of Materials Science: Materials in Electronics, 2013, 24, 572-575.	2.2	8
69	Cd-free Cu(InGa)Se2 solar cells with eco-friendly a-Si buffer layers. Applied Surface Science, 2020, 512, 145729.	6.1	8
70	Uninterrupted Selfâ€Generation Thermoelectric Power Device Based on the Radiative Cooling Emitter and Solar Selective Absorber. Solar Rrl, 2022, 6, .	5.8	8
71	Heterojunction solar cells produced by porous silicon layer transfer technology. Applied Physics A: Materials Science and Processing, 2012, 108, 929-934.	2.3	7
72	Influence of annealing temperature on the properties of polycrystalline silicon films formed by rapid thermal annealing of a-Si:H films. Journal of Materials Science: Materials in Electronics, 2013, 24, 4209-4212.	2.2	7

#	Article	IF	CITATIONS
73	Fabrication of black silicon by Ni assisted chemical etching. Materials Research Express, 2018, 5, 015020.	1.6	7
74	High surface area Cu2ZnSnS4 nanosheets synthesized by microwave irradiation method: A material for detecting ammonia-ammonium ions in wastewater. Materials Science in Semiconductor Processing, 2021, 136, 106159.	4.0	7
75	Impurity photovoltaic effect in silicon solar cells doped with two impurities. Optical and Quantum Electronics, 2014, 46, 1457-1465.	3.3	6
76	Formation and mechanism of silicon nanostructures by Ni-assisted etching. Journal of Materials Science: Materials in Electronics, 2014, 25, 1559-1563.	2.2	6
77	Microwaveâ€assisted synthesis of erbiumâ€doped yttrium oxide nanoparticles and their upconversion properties. Micro and Nano Letters, 2015, 10, 40-44.	1.3	6
78	Nanostructured multi rystalline silicon solar cell with isotropic etching by HF/KMnO ₄ . Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600703.	1.8	6
79	Impact of thiourea concentration on the properties of sol–gel derived Zn(O,S) thin films and Cu(In,Ga)Se2 solar cells. Journal of Sol-Gel Science and Technology, 2018, 86, 266-273.	2.4	6
80	Stressâ€Induced Failure Study on a Highâ€Temperature Airâ€Stable Solarâ€Selective Absorber Based on W–SiC 2 Ceramic Composite. Solar Rrl, 2020, 4, 2000336.) 5.8	6
81	Influence of double current injection annealing on anti-LID effect in mono-like cast silicon PERC solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 3221-3227.	2.2	6
82	Effects of ethyl acetate additive on Cu2ZnSnS4 solar cells fabricated with a facile dimethylformamide-based solution coating process. Ceramics International, 2021, 47, 6262-6269.	4.8	6
83	Improving TiO2 gas sensing selectivity to acetone and other gases via a molecular imprinting method. Nanotechnology, 2021, 32, 155503.	2.6	6
84	Effect of the thickness on the optoelectronic properties of SnS films and photovoltaic performance of SnS/i-a-Si/n-a-Si solar cells. Applied Physics A: Materials Science and Processing, 2014, 117, 2167-2173.	2.3	5
85	Fabrication of Cu2ZnSnS4 thin films by simple solution method using citric acid as complexing agent. Journal of Materials Science: Materials in Electronics, 2017, 28, 14424-14429.	2.2	5
86	Passivation properties of alumina for multicrystalline silicon nanostructure prepared by spin-coating method. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	5
87	Hydrogen influence on the properties of amorphous carbon films for transparent conductive electrode by HFCVD. Journal of Materials Science: Materials in Electronics, 2018, 29, 14277-14284.	2.2	5
88	Influence of Er3+ doping concentration and temperature on upconversion photoluminescence property of NaY(WO4)2 phosphor. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	5
89	Nanostructure-induced fast texturization of mono-crystalline silicon in low-concentration alkaline solution. Materials Science in Semiconductor Processing, 2019, 94, 1-8.	4.0	5
90	Formation of emitter by boron spin-on doping from SiO2 nanosphere and properties of the related n-PERT solar cells. Solar Energy, 2021, 225, 317-322.	6.1	5

#	Article	IF	CITATIONS
91	Excellent near-infrared response performance in p-CuS/n-Si heterojunction using a low-temperature solution method. Surfaces and Interfaces, 2021, 26, 101430.	3.0	5
92	Near Room-Temperature Synthesis of Vertical Graphene Nanowalls on Dielectrics. ACS Applied Materials & Interfaces, 2022, 14, 21348-21355.	8.0	5
93	Hybrid process for texturization of diamond wire sawn multicrystalline silicon solar cell. Physica Status Solidi - Rapid Research Letters, 2016, 10, 870-873.	2.4	4
94	Influence of sulfurization pressure on structural and electrical property of Cu2ZnSnS4 thin film and solar cell. Journal of Materials Science: Materials in Electronics, 2016, 27, 8688-8692.	2.2	4
95	Engineered Cu(InGa)Se2 thin films through CaF2 post-deposition treatment for enhancing solar cell performance. Journal of Alloys and Compounds, 2018, 766, 1046-1053.	5.5	4
96	Property comparison of flexible Cu(InGa)Se2 thin film solar cells on Ti and Ni foils without diffusion barrier. Journal of Materials Science: Materials in Electronics, 2019, 30, 11754-11763.	2.2	4
97	Highly luminescent up/down conversion thin films prepared by a room temperature process. Thin Solid Films, 2019, 683, 1-7.	1.8	4
98	Temperature Effect of Nano-Structure Rebuilding on Removal of DWS mc-Si Marks by Ag/Cu MACE Process and Solar Cell. Energies, 2020, 13, 4890.	3.1	4
99	Self-deformed Si/Graphene@C anode for stress relief in lithium ion batteries. Materials Today Sustainability, 2022, 19, 100165.	4.1	4
100	Polycrystalline silicon films fabricated by rapid thermal annealing. Journal of Materials Science: Materials in Electronics, 2012, 23, 1279-1283.	2.2	3
101	Improvement of the Crystallinity of Silicon Films Deposited by Hot-Wire Chemical Vapor Deposition with Negative Substrate Bias. Journal of Electronic Materials, 2013, 42, 2464-2469.	2.2	3
102	Effect of sulfurization temperature on the property of Cu2ZnSnS4 thin film by eco-friendly nanoparticle ink method. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	3
103	Effect of e-beam evaporated elemental metal stack precursors on the property of Cu(InGa)Se2 thin films through two-step process. Journal of Materials Science: Materials in Electronics, 2018, 29, 19812-19818.	2.2	3
104	The role of potassium in grain boundaries of flexible CZTSSe thin film solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 17503-17507.	2.2	3
105	Formation of Inverted Pyramidâ€Like Submicron Structures on Multicrystalline Silicon Using Nitric Acid as Oxidant in Metal Assisted Chemical Etching Process. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800636.	1.8	3
106	Residual stress regulation for CZTSSe thin film on flexible titanium substrate by introducing a Ge transition layer. Journal of Materials Science: Materials in Electronics, 2019, 30, 7337-7346.	2.2	3
107	Enhanced open-circuit voltage in p-type passivated emitter and rear cell by doped polysilicon layer as passivation contact. Solar Energy, 2020, 207, 436-440.	6.1	3
108	Performance and stability enhancement of Cu(InGa)Se2 solar cells on ultrathin glass by potassium incorporation. Materials Letters, 2020, 271, 127749.	2.6	3

Honglie Shen

#	Article	IF	CITATIONS
109	Enhanced performance of solar cell with n+ emitter by SiO2 nanospheres assisted liquid phosphorus diffusion. Solar Energy, 2021, 222, 230-234.	6.1	3
110	The effect of near-surface electron trapping layer on the acetone sensing performance of black TiO ₂ capped with ZnO. Nanotechnology, 2022, 33, 275712.	2.6	3
111	Highly flexible and sensitive wearable strain and pressure sensor based on porous graphene paper for human motion. Journal of Materials Science: Materials in Electronics, 2022, 33, 17637-17648.	2.2	3
112	Fast growth of conductive amorphous carbon films by HFCVD with filament temperature control. Materials Letters, 2018, 228, 293-296.	2.6	2
113	Effect of deposition pressure on the properties of amorphous carbon films by hot-filament chemical vapor deposition. Journal of Materials Science: Materials in Electronics, 2019, 30, 10145-10151.	2.2	2
114	Simulation of a Charged Al2O3 Film as an Assisting Passivation Layer for a-Si Passivated Contact P-Type Silicon Solar Cells. Silicon, 2022, 14, 3339-3348.	3.3	2
115	High-efficiency passivated emitter and rear cells with nano honeycomb structure. Solar Energy, 2021, 224, 916-922.	6.1	2
116	Effect of O2/Ar ratio and sputtering power on the photoelectric properties of antimony doped tin oxide films on ZnO layer. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	2
117	Enhanced Conductivity and Flexibility in Reduced Graphene Oxide Paper by Combined Chemical-Thermal Reduction. Journal of Electronic Materials, 2021, 50, 6991.	2.2	2
118	Reduced power degradation in bifacial PERC modules by a rear silicon oxide additive layer. International Journal of Energy Research, 2021, 45, 8659-8665.	4.5	2
119	Performance enhancement of flexible CZTSSe solar cells on optimized roughness substrate. Optical Engineering, 2018, 57, 1.	1.0	2
120	Fabrication of black silicon via reactive ion etching through Cu micromask. Micro and Nano Letters, 2014, 9, 325-327.	1.3	1
121	Improved passivation effect in multicrystalline black silicon by chemical solution pre-treatment. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	1
122	Preparation of Cu2ZnSn(S,Se)4 thin film solar cells by a green and facile solution method. Materials Research Express, 2018, 5, 125503.	1.6	1
123	Influence of SiO2 nanosphere on the performance of n+ layer fabricated by phosphorus diffusion using phosphoric acid solution. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	1
124	Dependence of plasma power for direct synthesis of nitrogen-doped graphene films on glass by plasma-assisted hot filament chemical vapor deposition. Journal of Materials Science: Materials in Electronics, 2019, 30, 18811-18817.	2.2	1
125	The effect of Ge content on photovoltaic property of flexible Cu2ZnSn(S,Se)4 thin film solar cells. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	1
126	Effect of selenium partial pressure on the performance of Cu2ZnSn(S, Se)4 solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 8662-8669.	2.2	1

#	Article	IF	CITATIONS
127	Effects of the environmental unilateral shield on radiative cooling performance. Journal of Photonics for Energy, 2021, 11, .	1.3	1
128	Texturization of Diamond Wire Sawn Mc-silicon by Acid Vapor Etching Followed by Acid Solution Post-treatment. Silicon, 2022, 14, 4831-4838.	3.3	1
129	Effect of sputtering power on the structure and blue-light shielding capability of cuprous oxide thin films. Optical Engineering, 2020, 59, .	1.0	1
130	Synthesis and Characterization of Sn/SnO2/C Nano-Composite Structure: High-Performance Negative Electrode for Lithium-Ion Batteries. Materials, 2022, 15, 2475.	2.9	1
131	Synergistic effect of reduced graphene oxide/carbon nanotube hybrid papers on cross-plane thermal and mechanical properties. RSC Advances, 2022, 12, 19144-19153.	3.6	1
132	Microcrystalline silicon films fabricated by bias-assisted hot-wire chemical vapor deposition. Journal of Materials Science: Materials in Electronics, 2013, 24, 4574-4577.	2.2	0
133	Effect of substrate bias on the properties of microcrystalline silicon films deposited by hotâ€wire chemical vapor deposition. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 574-579.	1.8	0
134	Properties of boron-doped μc-Ge:H films deposited by hot-wire CVD. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 516-519.	1.0	0
135	Effect of calcium incorporation on properties of Cu(InGa)Se2 thin film and solar cell. Materials Research Express, 2019, 6, 096430.	1.6	0
136	Fabrication and performance of p+ layer by SiO2 nanospheres assisted liquid boron diffusion. Journal of Materials Science: Materials in Electronics, 2020, 31, 14322-14329.	2.2	0
137	Optical properties of stepped-cone silicon nanostructures fabricated by nanosphere mask and RIE method. Materials Technology, 0, , 1-8.	3.0	0
138	Enhanced Conversion Efficiency of Monocrystalline Pâ€Type Passivated Emitter and Rear Cells in Commercial Production Line by Improving Rear Side Passivation. Energy Technology, 2021, 9, 2001115.	3.8	0
139	Synthesis and photoelectric properties of SnSe films through selenization of evaporated Sn-metal films. Modern Physics Letters B, 2021, 35, 2150382.	1.9	0