Probir Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3717084/publications.pdf Version: 2024-02-01

DDORID DAG

#	Article	IF	CITATIONS
1	Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology, 2011, 102, 3883-3887.	4.8	270
2	Life cycle energy and CO2 analysis of microalgae-to-biodiesel: Preliminary results and comparisons. Bioresource Technology, 2011, 102, 5800-5807.	4.8	199
3	Potential of microalgae as a sustainable feed ingredient for aquaculture. Journal of Biotechnology, 2021, 341, 1-20.	1.9	120
4	Two phase microalgae growth in the open system for enhanced lipid productivity. Renewable Energy, 2011, 36, 2524-2528.	4.3	118
5	Treatment of Wastewaters by Microalgae and the Potential Applications of the Produced Biomass—A Review. Water (Switzerland), 2021, 13, 27.	1.2	108
6	Hydrothermal liquefaction of marine microalgae biomass using co-solvents. Algal Research, 2019, 38, 101421.	2.4	74
7	Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media. Bioresource Technology, 2016, 216, 824-829.	4.8	67
8	Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid. Biochemical Engineering Journal, 2012, 68, 109-113.	1.8	66
9	Microalgal nutrients recycling from the primary effluent of municipal wastewater and use of the produced biomass as bio-fertilizer. International Journal of Environmental Science and Technology, 2019, 16, 3355-3364.	1.8	49
10	A comparative study of the growth of Tetraselmis sp. in large scale fixed depth and decreasing depth raceway ponds. Bioresource Technology, 2016, 216, 114-120.	4.8	44
11	Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation. Sustainability, 2018, 10, 1364.	1.6	44
12	Enhanced enzymatic transesterification of palm oil to biodiesel. Biochemical Engineering Journal, 2011, 55, 119-122.	1.8	42
13	Immobilization of microalgae on exogenous fungal mycelium: A promising separation method to harvest both marine and freshwater microalgae. Biochemical Engineering Journal, 2014, 91, 53-57.	1.8	42
14	Energy recovery and nutrients recycling from municipal sewage sludge. Science of the Total Environment, 2020, 715, 136775.	3.9	39
15	Sustainable production of toxin free marine microalgae biomass as fish feed in large scale open system in the Qatari desert. Bioresource Technology, 2015, 192, 97-104.	4.8	37
16	Microalgal bioremediation of petroleum-derived low salinity and low pH produced water. Journal of Applied Phycology, 2019, 31, 435-444.	1.5	37
17	Long-term semi-continuous cultivation of a halo-tolerant Tetraselmis sp. using recycled growth media. Bioresource Technology, 2019, 276, 35-41.	4.8	30
18	Circular Economy in Basic Supply: Framing the Approach for the Water and Food Sectors of the Gulf Cooperation Council Countries. Sustainable Production and Consumption, 2021, 27, 1273-1285.	5.7	29

PROBIR DAS

#	Article	lF	CITATIONS
19	Assessment of the algae-based biofertilizer influence on date palm (Phoenix dactylifera L.) cultivation. Journal of Applied Phycology, 2019, 31, 457-463.	1.5	27
20	The effect of culture salinity on the harvesting of microalgae biomass using pilot-scale tangential-flow-filter membrane. Bioresource Technology, 2019, 293, 122057.	4.8	27
21	Incremental energy supply for microalgae culture in a photobioreactor. Bioresource Technology, 2011, 102, 2973-2978.	4.8	26
22	Factors affecting the induction of UV protectant and lipid productivity in Lyngbya for sequential biorefinery product recovery. Bioresource Technology, 2019, 278, 303-310.	4.8	26
23	Effect of harvesting methods on the energy requirement of Tetraselmis sp. biomass production and biocrude yield and quality. Bioresource Technology, 2019, 284, 9-15.	4.8	26
24	A feasibility study of utilizing hydrothermal liquefaction derived aqueous phase as nutrients for semi-continuous cultivation of Tetraselmis sp Bioresource Technology, 2020, 295, 122310.	4.8	26
25	Outdoor Continuous Cultivation of Self-Settling Marine Cyanobacterium <i>Chroococcidiopsis</i> sp Industrial Biotechnology, 2018, 14, 45-53.	0.5	23
26	The Potential of Marine Microalgae for the Production of Food, Feed, and Fuel (3F). Fermentation, 2022, 8, 316.	1.4	23
27	Thermal modeling and optimization of microalgal biomass production in the harsh desert conditions of State of Qatar. Algal Research, 2019, 38, 101381.	2.4	22
28	Potential Applications of Algae-Based Bio-fertilizer. Soil Biology, 2019, , 41-65.	0.6	20
29	Comparison of dual stage ultrafiltration and hybrid ultrafiltration-forward osmosis process for harvesting microalgae (Tetraselmis sp.) biomass. Chemical Engineering and Processing: Process Intensification, 2020, 157, 108112.	1.8	20
30	Effect of the induced dielectrophoretic force on harvesting of marine microalgae (Tetraselmis sp.) in electrocoagulation. Journal of Environmental Management, 2020, 260, 110106.	3.8	20
31	Use of Co-Solvents in Hydrothermal Liquefaction (HTL) of Microalgae. Energies, 2020, 13, 124.	1.6	20
32	Nutrients and Energy Digestibility of Microalgal Biomass for Fish Feed Applications. Sustainability, 2021, 13, 13211.	1.6	20
33	Critical factors in energy generation from microalgae. Energy, 2017, 120, 138-152.	4.5	19
34	Industrial sludge valorization and decontamination via lipid extraction and heavy metals removal using low-cost protic ionic liquid. Science of the Total Environment, 2022, 835, 155451.	3.9	17
35	A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis. Energy, 2022, 251, 123954.	4.5	15
36	Comparison of biocrude oil production from self-settling and non-settling microalgae biomass produced in the Qatari desert environment. International Journal of Environmental Science and Technology, 2019, 16, 7443-7454.	1.8	14

PROBIR DAS

#	Article	IF	CITATIONS
37	Outdoor scaleâ€up of <i>Leptolyngbya</i> sp.: Effect of light intensity and inoculum volume on photoinhibition and â€oxidation. Biotechnology and Bioengineering, 2021, 118, 2368-2379.	1.7	12
38	Application of mid-infrared chemical imaging and multivariate chemometrics analyses to characterise a population of microalgae cells. Bioresource Technology, 2013, 134, 316-323.	4.8	11
39	A study to investigate the energy recovery potential from different macromolecules of a low-lipid marine Tetraselmis sp. biomass through HTL process. Renewable Energy, 2022, 189, 78-89.	4.3	11
40	Potential utilization of waste nitrogen fertilizer from a fertilizer industry using marine microalgae. Science of the Total Environment, 2021, 755, 142532.	3.9	10
41	A novel electrocoagulation electrode configuration for the removal of total organic carbon from primary treated municipal wastewater. Environmental Science and Pollution Research, 2020, 27, 23888-23898.	2.7	9
42	Enhancing the electrocoagulation process for harvesting marine microalgae (Tetraselmis sp.) using interdigitated electrodes. Journal of Environmental Management, 2021, 292, 112761.	3.8	7
43	Optimization of iron dosage for microalgal biomass production as a feedstock for biofuel. Biofuels, 2021, 12, 569-577.	1.4	6
44	Effect of ethylene–vinyl acetate copolymer on kinematic viscosity and thermal stability of jojoba, date seed, and waste cooking oils in lubricant applications. Iranian Polymer Journal (English Edition), 2022, 31, 261.	1.3	3
45	Biocrude oil and high-value metabolite production potential of the Nitzschia sp Biomass Conversion and Biorefinery, 0, , 1.	2.9	2
46	Harvesting of Chlorella sp. microalgae by dielectrophoretic force using titanium dioxide (TiO2) insulated electrodes. Algal Research, 2022, 65, 102730.	2.4	1