Joseph M Awika

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3716971/publications.pdf

Version: 2024-02-01

70 papers

5,098 citations

94269 37 h-index 98622 67 g-index

70 all docs

70 docs citations

times ranked

70

4420 citing authors

#	Article	IF	CITATIONS
1	Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 2004, 65, 1199-1221.	1.4	670
2	Screening Methods To Measure Antioxidant Activity of Sorghum (Sorghum bicolor) and Sorghum Products. Journal of Agricultural and Food Chemistry, 2003, 51, 6657-6662.	2.4	611
3	Interaction of Tannins and Other Sorghum Phenolic Compounds with Starch and Effects on in Vitro Starch Digestibility. Journal of Agricultural and Food Chemistry, 2012, 60, 11609-11617.	2.4	247
4	Anthocyanins from black sorghum and their antioxidant properties. Food Chemistry, 2005, 90, 293-301.	4.2	236
5	Properties of 3-Deoxyanthocyanins from Sorghum. Journal of Agricultural and Food Chemistry, 2004, 52, 4388-4394.	2.4	234
6	Major Cereal Grains Production and Use around the World. ACS Symposium Series, 2011, , 1-13.	0.5	188
7	Decorticating Sorghum To Concentrate Healthy Phytochemicals. Journal of Agricultural and Food Chemistry, 2005, 53, 6230-6234.	2.4	151
8	Sorghum 3-Deoxyanthocyanins Possess Strong Phase II Enzyme Inducer Activity and Cancer Cell Growth Inhibition Properties. Journal of Agricultural and Food Chemistry, 2009, 57, 1797-1804.	2.4	135
9	Processing of Sorghum (Sorghum bicolor) and Sorghum Products Alters Procyanidin Oligomer and Polymer Distribution and Content. Journal of Agricultural and Food Chemistry, 2003, 51, 5516-5521.	2.4	133
10	A new approach to measure melamine, cyanuric acid, and melamine cyanurate using surface enhanced Raman spectroscopy coupled with gold nanosubstrates. Sensing and Instrumentation for Food Quality and Safety, 2008, 2, 66-71.	1.5	122
11	Comparative antioxidant, antiproliferative and phase II enzyme inducing potential of sorghum (Sorghum bicolor) varieties. LWT - Food Science and Technology, 2009, 42, 1041-1046.	2.5	108
12	Resistant starch formation through intrahelical V-complexes between polymeric proanthocyanidins and amylose. Food Chemistry, 2019, 285, 326-333.	4.2	105
13	Proanthocyanidin profile of cowpea (Vigna unguiculata) reveals catechin-O-glucoside as the dominant compound. Food Chemistry, 2013, 139, 35-43.	4.2	102
14	Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. Food and Function, 2018, 9, 1389-1409.	2.1	101
15	Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients. Journal of Cereal Science, 2018, 84, 112-124.	1.8	100
16	Polyphenol interaction with food carbohydrates and consequences on availability of dietary glucose. Current Opinion in Food Science, 2016, 8, 14-18.	4.1	93
17	Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties: A review. Journal of Functional Foods, 2017, 38, 686-697.	1.6	90
18	Polymeric tannins significantly alter properties and in vitro digestibility of partially gelatinized intact starch granule. Food Chemistry, 2016, 208, 10-17.	4.2	81

#	Article	IF	Citations
19	Sorghum Phenolics Demonstrate Estrogenic Action and Induce Apoptosis in Nonmalignant Colonocytes. Nutrition and Cancer, 2012, 64, 419-427.	0.9	76
20	Interaction mechanisms of condensed tannins (proanthocyanidins) with wheat gluten proteins. Food Chemistry, 2018, 245, 1154-1162.	4.2	75
21	Ultra Performance Liquid Chromatography–Tandem Quadrupole Mass Spectrometry Profiling of Anthocyanins and Flavonols in Cowpea (<i>Vigna unguiculata</i>) of Varying Genotypes. Journal of Agricultural and Food Chemistry, 2012, 60, 3735-3744.	2.4	69
22	Effect of Condensed Tannin Profile on Wheat Flour Dough Rheology. Journal of Agricultural and Food Chemistry, 2016, 64, 7348-7356.	2.4	65
23	Effect of molecular weight profile of sorghum proanthocyanidins on resistant starch formation. Journal of the Science of Food and Agriculture, 2014, 94, 1212-1217.	1.7	64
24	Effects of edible plant polyphenols on gluten protein functionality and potential applications of polyphenol–gluten interactions. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2164-2199.	5.9	64
25	Phenolic composition and inhibitory effect against oxidative DNA damage of cooked cowpeas as affected by simulated in vitro gastrointestinal digestion. Food Chemistry, 2013, 141, 1763-1771.	4.2	55
26	Phenolic compounds profile in sorghum processed by extrusion cooking and dry heat in a conventional oven. Journal of Cereal Science, 2015, 65, 220-226.	1.8	54
27	Enhanced action of apigenin and naringenin combination on estrogen receptor activation in non-malignant colonocytes: implications on sorghum-derived phytoestrogens. Food and Function, 2015, 6, 749-755.	2.1	54
28	Thermal stability of 3-deoxyanthocyanidin pigments. Food Chemistry, 2014, 160, 246-254.	4.2	50
29	Interaction of Sorghum Tannins with Wheat Proteins and Effect on in Vitro Starch and Protein Digestibility in a Baked Product Matrix. Journal of Agricultural and Food Chemistry, 2015, 63, 1234-1241.	2.4	50
30	New Highly Stable Dimeric 3â€Deoxyanthocyanidin Pigments from <i>Sorghum bicolor</i> Leaf Sheath. Journal of Food Science, 2012, 77, C566-72.	1.5	48
31	Polyphenolic extracts from cowpea (Vigna unguiculata) protect colonic myofibroblasts (CCD18Co) Tj ETQq1 1 Function, 2015, 6, 145-153.	0.784314 2.1	rgBT /Overloc 48
32	Sorghum: Its Unique Nutritional and Health-Promoting Attributes. , 2017, , 21-54.		47
33	Combined cereal and pulse flavonoids show enhanced bioavailability by downregulating phase II metabolism and ABC membrane transporter function in Caco-2 model. Food Chemistry, 2019, 279, 88-97.	4.2	47
34	Effect of high molecular weight glutenin subunit composition in common wheat on dough properties and steamed bread quality. Journal of the Science of Food and Agriculture, 2014, 94, 2801-2806.	1.7	46
35	Structural profile of soluble and bound phenolic compounds in teff (Eragrostis tef) reveals abundance of distinctly different flavones in white and brown varieties. Food Chemistry, 2018, 263, 265-274.	4.2	45
36	Influence of Genetic Background on Anthocyanin and Copigment Composition and Behavior during Thermoalkaline Processing of Maize. Journal of Agricultural and Food Chemistry, 2015, 63, 5528-5538.	2.4	44

#	Article	IF	CITATIONS
37	Behavior of 3-deoxyanthocyanidins in the presence of phenolic copigments. Food Research International, 2008, 41, 532-538.	2.9	42
38	Effects of condensed vs hydrolysable tannins on gluten film strength and stability. Food Hydrocolloids, 2019, 89, 36-43.	5 . 6	42
39	Complementary cereals and legumes for health: Synergistic interaction of sorghum flavones and cowpea flavonols against LPSâ€induced inflammation in colonic myofibroblasts. Molecular Nutrition and Food Research, 2017, 61, 1600625.	1.5	36
40	A role for PFKFB3/iPFK2 in metformin suppression of adipocyte inflammatory responses. Journal of Molecular Endocrinology, 2017, 59, 49-59.	1.1	36
41	Effect of pyruvic acid and ascorbic acid on stability of 3â€deoxyanthocyanidins. Journal of the Science of Food and Agriculture, 2008, 88, 1987-1996.	1.7	32
42	Stability of 3-deoxyanthocyanin pigment structure relative to anthocyanins from grains under microwave assisted extraction. Food Chemistry, 2020, 333, 127494.	4.2	32
43	Effect of simulated gastrointestinal digestion on phenolic composition and antioxidant capacity of cooked cowpea (<i>Vigna unguiculata</i>) varieties. International Journal of Food Science and Technology, 2013, 48, 2638-2649.	1.3	31
44	Mutagenesis Breeding for Increased 3-Deoxyanthocyanidin Accumulation in Leaves of Sorghum bicolor (L.) Moench: A Source of Natural Food Pigment. Journal of Agricultural and Food Chemistry, 2014, 62, 1227-1232.	2.4	29
45	Stability of Apigeninidin and Its Methoxylated Derivatives in the Presence of Sulfites. Journal of Agricultural and Food Chemistry, 2010, 58, 9077-9082.	2.4	27
46	Rye flavonoids – Structural profile of the flavones in diverse varieties and effect of fermentation and heat on their structure and antioxidant properties. Food Chemistry, 2020, 324, 126871.	4.2	27
47	The effect of cooling and rehydration methods in high moisture meat analogs with pulse proteinsâ€peas, lentils, and faba beans. Journal of Food Science, 2021, 86, 1322-1334.	1.5	24
48	Application of a novel microwave energy treatment on brewers' spent grain (BSG): Effect on its functionality and chemical characteristics. Food Chemistry, 2021, 346, 128935.	4.2	21
49	Registration of Tx3362 Sorghum Germplasm. Journal of Plant Registrations, 2013, 7, 104-107.	0.4	18
50	Phytochemical-Related Health-Promoting Attributes of Sorghum and Millets. , 2019, , 225-258.		17
51	Rapid Estimation of Phenolic Content in Colored Maize by Nearâ€Infrared Reflectance Spectroscopy and Its Use in Breeding. Crop Science, 2015, 55, 2234-2243.	0.8	16
52	Identification of quantitative trait loci (QTLs) associated with maintenance of wheat (Triticum) Tj ETQq0 0 0 rgB	7 / Overlock	2 10 Tf 50 14
53	Qualitative assessment of †highly digestible' protein mutation in hard endosperm sorghum and its functional properties. Food Chemistry, 2019, 271, 561-569.	4.2	14
54	Effect of Highâ€Molecularâ€Weight Glutenin Subunit Allelic Composition on Wheat Flour Tortilla Quality. Cereal Chemistry, 2012, 89, 155-161.	1.1	13

#	Article	IF	CITATIONS
55	Prediction of wheat tortilla quality using multivariate modeling of kernel, flour, and dough properties. Innovative Food Science and Emerging Technologies, 2016, 34, 9-15.	2.7	12
56	Impact of condensed tannin interactions with grain proteins and non-starch polysaccharides on batter system properties. Food Chemistry, 2021, 359, 129969.	4.2	11
57	Sorghum Flavonoids: Unusual Compounds with Promising Implications for Health. ACS Symposium Series, 2011, , 171-200.	0.5	10
58	Depolymerization of sorghum procyanidin polymers into oligomers using HCl and epicatechin: Reaction kinetics and optimization. Journal of Cereal Science, 2016, 70, 170-176.	1.8	10
59	Changes in extractable phenolic profile during natural fermentation of wheat, sorghum and teff. Food Research International, 2021, 145, 110426.	2.9	10
60	Genetic dissection of endâ€use quality traits in two widely adapted wheat cultivars â€TAM 111' and â€TAM 112'. Crop Science, 2021, 61, 1944-1959.	0.8	9
61	Heritability of Popping Characteristics in Sorghum Grain. Crop Science, 2017, 57, 71-77.	0.8	8
62	High protein and gliadin content improves tortilla quality of a weak gluten wheat. LWT - Food Science and Technology, 2022, 160, 113320.	2.5	8
63	â€~TAM 114' Wheat, Excellent Breadâ€Making Quality Hard Red Winter Wheat Cultivar Adapted to the Southern High Plains. Journal of Plant Registrations, 2018, 12, 367-372.	0.4	7
64	Registration of â€~TAM 305' Hard Red Winter Wheat. Journal of Plant Registrations, 2015, 9, 325-330.	0.4	5
65	Shea (Vitellaria paradoxa) tree and soil parent material effects on soil properties and intercropped sorghum grain-Zn in southern Mali, West Africa. Plant and Soil, 2015, 386, 21-33.	1.8	5
66	â€~TAM 204' Wheat, Adapted to Grazing, Grain, and Grazeâ€out Production Systems in the Southern High Plains. Journal of Plant Registrations, 2019, 13, 377-382.	0.4	5
67	Interactions of 3-deoxyanthocyanins with gum arabic and sodium alginate contributing to improved pigment aqueous stability. Food Chemistry, 2022, 372, 131233.	4.2	5
68	Effect of tannins on microwave-assisted extractability and color properties of sorghum 3-deoxyanthocyanins. Food Research International, 2021, 148, 110612.	2.9	5
69	Milling Value of Sorghums Compared by Adjusting Yields to a Constant Product Color. Cereal Chemistry, 2002, 79, 249-251.	1.1	4
70	Future Research Needs for the Ancient Grains. , 2017, , 297-328.		4