
Veronique Angeli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3716799/publications.pdf Version: 2024-02-01

VERONIOUE ANCELL

#	Article	IF	CITATIONS
1	Caffeine prevents restenosis and inhibits vascular smooth muscle cell proliferation through the induction of autophagy. Autophagy, 2022, 18, 2150-2160.	9.1	9
2	Zinc and vitamin C intake increases spike and neutralising antibody production following SARSâ€CoVâ€⊋ infection. Clinical and Translational Medicine, 2022, 12, e731.	4.0	10
3	Transitional premonocytes emerge in the periphery for host defense against bacterial infections. Science Advances, 2022, 8, eabj4641.	10.3	9
4	Shortened Telomere Length in Sputum Cells of Bronchiectasis Patients is Associated with Dysfunctional Inflammatory Pathways. Lung, 2022, 200, 401-407.	3.3	3
5	LL-37-mediated activation of host receptors is critical for defense against group A streptococcal infection. Cell Reports, 2021, 34, 108766.	6.4	13
6	cGAS–STING cytosolic DNA sensing pathway is suppressed by JAK2-STAT3 in tumor cells. Scientific Reports, 2021, 11, 7243.	3.3	36
7	Leukocyte Trafficking via Lymphatic Vessels in Atherosclerosis. Cells, 2021, 10, 1344.	4.1	8
8	Tissue factor cytoplasmic domain exacerbates post-infarct left ventricular remodeling via orchestrating cardiac inflammation and angiogenesis. Theranostics, 2021, 11, 9243-9261.	10.0	13
9	The indirect antiangiogenic effect of IL-37 in the tumor microenvironment. Journal of Leukocyte Biology, 2020, 107, 783-796.	3.3	12
10	ImmGen at 15. Nature Immunology, 2020, 21, 700-703.	14.5	55
11	The Unresolved Pathophysiology of Lymphedema. Frontiers in Physiology, 2020, 11, 137.	2.8	85
12	Efficient aortic lymphatic drainage is necessary for atherosclerosis regression induced by ezetimibe. Science Advances, 2020, 6, .	10.3	24
13	Cavity Macrophages Get to the Heart of the Issue. Immunity, 2019, 51, 7-9.	14.3	19
14	Protective Function of Mitogenâ€Activated Protein Kinase Phosphatase 5 in Aging―and Dietâ€Induced Hepatic Steatosis and Steatohepatitis. Hepatology Communications, 2019, 3, 748-762.	4.3	21
15	Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science, 2019, 363, .	12.6	676
16	Halted Lymphocyte Egress via Efferent Lymph Contributes to Lymph Node Hypertrophy During Hypercholesterolemia. Frontiers in Immunology, 2019, 10, 575.	4.8	12
17	A Sub-population of Group A Streptococcus Elicits a Population-wide Production of Bacteriocins to Establish Dominance in the Host. Cell Host and Microbe, 2018, 23, 312-323.e6.	11.0	11
18	Hyaluronan Receptor LYVE-1-Expressing Macrophages Maintain Arterial Tone through Hyaluronan-Mediated Regulation of Smooth Muscle Cell Collagen. Immunity, 2018, 49, 326-341.e7.	14.3	235

Veronique Angeli

#	Article	IF	CITATIONS
19	ABCA8 Regulates Cholesterol Efflux and High-Density Lipoprotein Cholesterol Levels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2147-2155.	2.4	55
20	Fish scale-derived collagen patch promotes growth of blood and lymphatic vessels in vivo. Acta Biomaterialia, 2017, 63, 246-260.	8.3	48
21	Bidirectional Crosstalk between Lymphatic Endothelial Cell and T Cell and Its Implications in Tumor Immunity. Frontiers in Immunology, 2017, 8, 83.	4.8	38
22	Systematic Identification of Pharmacological Targets from Small-Molecule Phenotypic Screens. Cell Chemical Biology, 2016, 23, 1302-1313.	5.2	11
23	<i>Blomia tropicalis</i> –Specific TCR Transgenic Th2 Cells Induce Inducible BALT and Severe Asthma in Mice by an IL-4/IL-13–Dependent Mechanism. Journal of Immunology, 2016, 197, 3771-3781.	0.8	10
24	Loss of ADAMTS4 reduces high fat diet-induced atherosclerosis and enhances plaque stability in ApoEâ^'/â^' mice. Scientific Reports, 2016, 6, 31130.	3.3	46
25	NKT Cell Hyporesponsiveness Leads to Unrestrained Accumulation of Marginal Zone B Cells in Hypercholesterolemic Apolipoprotein E–Deficient Mice. Journal of Immunology, 2016, 197, 3894-3904.	0.8	9
26	Inducing Ischemia-reperfusion Injury in the Mouse Ear Skin for Intravital Multiphoton Imaging of Immune Responses. Journal of Visualized Experiments, 2016, , .	0.3	9
27	Neutrophils Self-Regulate Immune Complex-Mediated Cutaneous Inflammation through CXCL2. Journal of Investigative Dermatology, 2016, 136, 416-424.	0.7	62
28	Splenic extrafollicular reactions and BM plasma cells sustain IgM response associated with hypercholesterolemia. European Journal of Immunology, 2015, 45, 1300-1312.	2.9	8
29	Lymphadenectomy promotes tumor growth and cancer cell dissemination in the spontaneous RET mouse model of human uveal melanoma. Oncotarget, 2015, 6, 44806-44818.	1.8	3
30	Real-Time Imaging of Dendritic Cell Responses to Sterile Tissue Injury. Journal of Investigative Dermatology, 2015, 135, 1181-1184.	0.7	14
31	Lymphatic Vessels at the Heart of the Matter. Cell Metabolism, 2015, 22, 56-58.	16.2	5
32	Macrophage depletion reduces postsurgical tumor recurrence and metastatic growth in a spontaneous murine model of melanoma. Oncotarget, 2015, 6, 22857-22868.	1.8	39
33	A Three-Dimensional Atlas of Human Dermal Leukocytes, Lymphatics, and Blood Vessels. Journal of Investigative Dermatology, 2014, 134, 965-974.	0.7	111
34	Inflammatory lymphangiogenesis: cellular mediators and functional implications. Angiogenesis, 2014, 17, 373-381.	7.2	24
35	The <scp>DNA</scp> damage response induces antigen presenting cellâ€like functions in fibroblasts. European Journal of Immunology, 2014, 44, 1108-1118.	2.9	22
36	CD8 T Cells Regulate Allergic Contact Dermatitis by Modulating CCR2–Dependent TNF/iNOS–Expressing Ly6C + CD11b + Monocytic Cells. Journal of Investigative Dermatology, 2014, 134, 666-676.	0.7	22

Veronique Angeli

#	Article	IF	CITATIONS
37	GM-CSF–Licensed CD11b+ Lung Dendritic Cells Orchestrate Th2 Immunity to <i>Blomia tropicalis</i> . Journal of Immunology, 2014, 193, 496-509.	0.8	63
38	Melanoma-initiating cells exploit M2 macrophage TGFÎ ² and arginase pathway for survival and proliferation. Oncotarget, 2014, 5, 12027-12042.	1.8	38
39	Lymphatic Vessels Are Essential for the Removal of Cholesterol from Peripheral Tissues by SR-BI-Mediated Transport of HDL. Cell Metabolism, 2013, 17, 671-684.	16.2	243
40	Neutrophils contribute to inflammatory lymphangiogenesis by increasing VEGF-A bioavailability and secreting VEGF-D. Blood, 2013, 122, 3666-3677.	1.4	118
41	Hypertonic Saline Reduces Vascular Leakage in a Mouse Model of Severe Dengue. PLoS ONE, 2013, 8, e61621.	2.5	3
42	Expansion of Cortical and Medullary Sinuses Restrains Lymph Node Hypertrophy during Prolonged Inflammation. Journal of Immunology, 2012, 188, 4065-4080.	0.8	65
43	Development of Experimental Autoimmune Encephalomyelitis Critically Depends on CD137 Ligand Signaling. Journal of Neuroscience, 2012, 32, 18246-18252.	3.6	32
44	Human CD8 ⁺ T cells drive Th1 responses through the differentiation of TNF/iNOSâ€producing dendritic cells. European Journal of Immunology, 2011, 41, 1639-1651.	2.9	30
45	DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. Journal of Experimental Medicine, 2011, 208, 2141-2153.	8.5	235
46	Hypercholesterolemic Mice Exhibit Lymphatic Vessel Dysfunction and Degeneration. American Journal of Pathology, 2009, 175, 1328-1337.	3.8	136
47	SWAP-70 deficiency causes high-affinity plasma cell generation despite impaired germinal center formation. Blood, 2008, 111, 2714-2724.	1.4	26
48	Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnology, 2007, 25, 1159-1164.	17.5	1,142
49	Inflammation, Lymphatic Function, And Dendritic Cell Migration. Lymphatic Research and Biology, 2006, 4, 217-228.	1.1	107
50	B Cell-Driven Lymphangiogenesis in Inflamed Lymph Nodes Enhances Dendritic Cell Mobilization. Immunity, 2006, 24, 203-215.	14.3	395
51	Langerhans cells arise from monocytes in vivo. Nature Immunology, 2006, 7, 265-273.	14.5	627
52	Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nature Immunology, 2006, 7, 652-662.	14.5	589
53	Signaling protein SWAP-70 is required for efficient B cell homing to lymphoid organs. Nature Immunology, 2006, 7, 827-834.	14.5	68
54	Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3781-3786.	7.1	313

VERONIQUE ANGELI

#	Article	IF	CITATIONS
55	Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nature Reviews Immunology, 2005, 5, 617-628.	22.7	989
56	Factors and signals that govern the migration of dendritic cells via lymphatics: recent advances. Seminars in Immunopathology, 2005, 26, 273-287.	4.0	115
57	Activation of the Prostaglandin D2 Receptor DP2/CRTH2 Increases Allergic Inflammation in Mouse. Journal of Immunology, 2005, 174, 3703-3708.	0.8	208
58	Identification of the Circulating Langerhans Cell Precursor Blood, 2005, 106, 634-634.	1.4	0
59	A Type I IFN-Dependent Pathway Induced by <i>Schistosoma mansoni</i> Eggs in Mouse Myeloid Dendritic Cells Generates an Inflammatory Signature. Journal of Immunology, 2004, 172, 3011-3017.	0.8	63
60	Activation of the D Prostanoid Receptor 1 Regulates Immune and Skin Allergic Responses. Journal of Immunology, 2004, 172, 3822-3829.	0.8	83
61	Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11779-11784.	7.1	467
62	Role of CCR8 and Other Chemokine Pathways in the Migration of Monocyte-derived Dendritic Cells to Lymph Nodes. Journal of Experimental Medicine, 2004, 200, 1231-1241.	8.5	266
63	Activation of Peroxisome Proliferator-Activated Receptor-Î ³ in Dendritic Cells Inhibits the Development of Eosinophilic Airway Inflammation in a Mouse Model of Asthma. American Journal of Pathology, 2004, 164, 263-271.	3.8	162
64	Dyslipidemia Associated with Atherosclerotic Disease Systemically Alters Dendritic Cell Mobilization. Immunity, 2004, 21, 561-574.	14.3	254
65	Prostaglandin D ₂ inhibits the production of interleukinâ€12 in murine dendritic cells through multiple signaling pathways. European Journal of Immunology, 2003, 33, 889-898.	2.9	58
66	Pivotal roles of the parasite PGD2 synthase and of the host D prostanoid receptor 1 in schistosome immune evasion. European Journal of Immunology, 2003, 33, 2764-2772.	2.9	137
67	Early IL-2 Production by Mouse Dendritic Cells Is the Result of Microbial-Induced Priming. Journal of Immunology, 2003, 170, 5075-5081.	0.8	161
68	Prostaglandin D2 Affects the Maturation of Human Monocyte-Derived Dendritic Cells: Consequence on the Polarization of Naive Th Cells. Journal of Immunology, 2003, 170, 4943-4952.	0.8	137
69	Peroxisome Proliferator-Activated Receptor Î ³ Inhibits the Migration of Dendritic Cells: Consequences for the Immune Response. Journal of Immunology, 2003, 170, 5295-5301.	0.8	85
70	Antigen Presentation by CD1d Contributes to the Amplification of Th2 Responses to <i>Schistosoma mansoni</i> Glycoconjugates in Mice. Journal of Immunology, 2002, 169, 906-912.	0.8	83
71	Schistosoma mansoni induces the synthesis of IL-6 in pulmonary microvascular endothelial cells: role of IL-6 in the control of lung eosinophilia during infection. European Journal of Immunology, 2001, 31, 2751-2761.	2.9	33
72	Role of the Parasite-Derived Prostaglandin D2 in the Inhibition of Epidermal Langerhans Cell Migration during Schistosomiasis Infection. Journal of Experimental Medicine, 2001, 193, 1135-1148.	8.5	257

#	Article	IF	CITATIONS
73	Peroxisome proliferatorâ€activated receptor γ activators inhibit interleukinâ€12 production in murine dendritic cells. FEBS Letters, 2000, 486, 261-266.	2.8	152
74	Schistosoma mansoni schistosomula reduce E-selectin and VCAM-1 expression in TNF-α-stimulated lung microvascular endothelial cells by interfering with the NF-κB pathway. European Journal of Immunology, 1999, 29, 3691-3701.	2.9	44
75	<i>Schistosoma mansoni</i> Activates Host Microvascular Endothelial Cells To Acquire an Anti-Inflammatory Phenotype. Infection and Immunity, 1999, 67, 3403-3409.	2.2	28