
Carlos Fonseca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3716643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A highâ€density 256â€channel cap for dry electroencephalography. Human Brain Mapping, 2022, 43, 1295-1308.	3.6	22
2	The Arch Electrode: A Novel Dry Electrode Concept for Improved Wearing Comfort. Frontiers in Neuroscience, 2021, 15, 748100.	2.8	8
3	Mechanically robust silver coatings prepared by electroless plating on thermoplastic polyurethane. Applied Surface Science, 2018, 443, 39-47.	6.1	27
4	Contact Pressure and Flexibility of Multipin Dry EEG Electrodes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 750-757.	4.9	54
5	In-service characterization of a polymer wick-based quasi-dry electrode for rapid pasteless electroencephalography. Biomedizinische Technik, 2018, 63, 349-359.	0.8	21
6	Alginate-based hydrogels as an alternative to electrolytic gels for rapid EEG monitoring and easy cleaning procedures. Sensors and Actuators B: Chemical, 2017, 247, 273-283.	7.8	40
7	Ag:TiNâ€Coated Polyurethane for Dry Biopotential Electrodes: From Polymer Plasma Interface Activation to the First EEG Measurements. Plasma Processes and Polymers, 2016, 13, 341-354.	3.0	27
8	Managing coniferous production forests towards bat conservation. Wildlife Research, 2016, 43, 80.	1.4	9
9	Assessing a novel polymer-wick based electrode for EEG neurophysiological research. Journal of Neuroscience Methods, 2016, 267, 126-131.	2.5	20
10	Electrochemical characterization of nanostructured Ag:TiN thin films produced by glancing angle deposition on polyurethane substrates for bio-electrode applications. Journal of Electroanalytical Chemistry, 2016, 768, 110-120.	3.8	12
11	Electrochemical and structural characterization of nanocomposite Agy:TiNx thin films for dry bioelectrodes: the effect of the N/Ti ratio and Ag content. Electrochimica Acta, 2015, 153, 602-611.	5.2	9
12	Development of polymer wicks for the fabrication of bio-medical sensors. Materials Science and Engineering C, 2015, 49, 356-363.	7.3	19
13	How to mitigate impacts of wind farms on bats? A review of potential conservation measures in the European context. Environmental Impact Assessment Review, 2015, 51, 10-22.	9.2	37
14	Poly(Trimethylene Carbonate-co-ε-Caprolactone) Promotes Axonal Growth. PLoS ONE, 2014, 9, e88593.	2.5	24
15	Ag:TiN nanocomposite thin films for bioelectrodes: The effect of annealing treatments on the electrical and mechanical behavior. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	2.1	6
16	Comparison of three types of dry electrodes for electroencephalography. Acta IMEKO (2012), 2014, 3, 33.	0.7	25
17	Development of a quasi-dry electrode for EEG recording. Sensors and Actuators A: Physical, 2013, 199, 310-317.	4.1	82
18	Signal Quality of Titanium and Titanium Nitride Coated Dry Polymer Electrodes. Biomedizinische Technik, 2012, 57, .	0.8	0

CARLOS FONSECA

#	Article	IF	CITATIONS
19	Plasma Surface Activation and TiN Coating of a TPV Substrate for Biomedical Applications. Plasma Processes and Polymers, 2011, 8, 1174-1183.	3.0	7
20	Plasma Surface Modification of Polycarbonate and Poly(propylene) Substrates for Biomedical Electrodes. Plasma Processes and Polymers, 2010, 7, 676-686.	3.0	17
21	Biocompatibility and Calcification of Bovine Pericardium Employed for the Construction of Cardiac Bioprostheses Treated With Different Chemical Crosslink Methods. Artificial Organs, 2010, 34, E168-76.	1.9	41
22	Neural cell growth on TiO2 anatase nanostructured surfaces. Thin Solid Films, 2009, 518, 160-170.	1.8	24
23	Electrochemical behaviour of titanium coated stainless steel by r.f. sputtering in synthetic sweat solutions for electrode applications. Corrosion Science, 2004, 46, 3005-3018.	6.6	22
24	Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials, 2003, 24, 263-273.	11.4	259
25	Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition	11.4	106