Jörg Ewald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3716586/publications.pdf

Version: 2024-02-01

68 papers 2,669 citations

293460 24 h-index 232693 48 g-index

73 all docs 73 docs citations

times ranked

73

4080 citing authors

#	Article	IF	CITATIONS
1	Disentangling effects of climate and land use on biodiversity and ecosystem servicesâ€"A multiâ€scale experimental design. Methods in Ecology and Evolution, 2022, 13, 514-527.	2.2	15
2	Humuspflege in GebirgswÄklern der Kalkalpen: Wissensstand und Massnahmen. Schweizerische Zeitschrift Fur Forstwesen, 2022, 173, 36-43.	0.5	1
3	Landscape diversity and local temperature, but not climate, affect arthropod predation among habitat types. PLoS ONE, 2022, 17, e0264881.	1.1	2
4	Interactive effects of climate and land use on pollinator diversity differ among taxa and scales. Science Advances, 2022, 8, eabm9359.	4.7	26
5	The European Forest Plant Species List (EuForPlant): Concept and applications. Journal of Vegetation Science, 2022, 33, .	1.1	23
6	Plant richness, land use and temperature differently shape invertebrate leaf-chewing herbivory on plant functional groups. Oecologia, 2022, 199, 407-417.	0.9	3
7	Alien plant invasion hotspots and invasion debt in European woodlands. Journal of Vegetation Science, 2021, 32, e13014.	1.1	19
8	Climate and socioâ€economic factors explain differences between observed and expected naturalization patterns of European plants around the world. Global Ecology and Biogeography, 2021, 30, 1514-1531.	2.7	8
9	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	2.7	49
10	The relevance of the concept of potential natural vegetation in the Anthropocene. Plant Ecology and Diversity, 2021, 14, 13-22.	1.0	13
11	Thick forest floors in the Calcareous Alps – Distribution, ecological functions and carbon storage potential. Catena, 2021, 207, 105664.	2.2	1
12	Relationship of insect biomass and richness with land use along a climate gradient. Nature Communications, 2021, 12, 5946.	5.8	61
13	The whole and its parts: why and how to disentangle plant communities and synusiae in vegetation classification. Applied Vegetation Science, 2020, 23, 127-135.	0.9	10
14	EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Applied Vegetation Science, 2020, 23, 648-675.	0.9	186
15	High resistance of soils to short-term re-grazing in a long-term abandoned alpine pasture. Agriculture, Ecosystems and Environment, 2020, 300, 107008.	2.5	4
16	Plant indicators for Folic Histosols in mountain forests of the Calcareous Alps. Applied Vegetation Science, 2020, 23, 285-296.	0.9	6
17	Oak-hornbeam forests of central Europe. Preslia, 2020, 92, 1-34.	1.1	17
18	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	1.1	185

#	Article	lF	CITATIONS
19	Alpha diversity of vascular plants in European forests. Journal of Biogeography, 2019, 46, 1919-1935.	1.4	52
20	What are the organismic elements of vegetation science?. Applied Vegetation Science, 2018, 21, 341-344.	0.9	5
21	Traits and climate are associated with first flowering day in herbaceous species along elevational gradients. Ecology and Evolution, 2018, 8, 1147-1158.	0.8	43
22	Classification of European beech forests: a Gordian Knot?. Applied Vegetation Science, 2017, 20, 494-512.	0.9	65
23	Resurvey of historical vegetation plots: a tool for understanding longâ€term dynamics of plant communities. Applied Vegetation Science, 2017, 20, 161-163.	0.9	48
24	Coppicing systems as a way of understanding patterns in forest vegetation. Folia Geobotanica, 2017, 52, 1-3.	0.4	9
25	Alien plant invasions in European woodlands. Diversity and Distributions, 2017, 23, 969-981.	1.9	98
26	Formalized classification of European fen vegetation at the alliance level. Applied Vegetation Science, 2017, 20, 124-142.	0.9	73
27	Giving meaning to Ellenberg nutrient values: National Forest Soil Inventory yields frequencyâ€based scaling. Applied Vegetation Science, 2017, 20, 115-123.	0.9	13
28	European Vegetation Archive (EVA): an integrated database of European vegetation plots. Applied Vegetation Science, 2016, 19, 173-180.	0.9	247
29	Species-specific and generic biomass equations for seedlings and saplings of European tree species. European Journal of Forest Research, 2016, 135, 313-329.	1.1	67
30	Climatic marginality: a new metric for the susceptibility of tree species to warming exemplified by Fagus sylvatica (L.) and Ellenberg's quotient. European Journal of Forest Research, 2016, 135, 137-152.	1.1	29
31	A comparative framework for broadâ€scale plotâ€based vegetation classification. Applied Vegetation Science, 2015, 18, 543-560.	0.9	126
32	Assessing the Sensitivity of Mountain Forests to Site Degradation in the Northern Limestone Alps, Europe. Mountain Research and Development, 2015, 35, 139-151.	0.4	6
33	Temperate forests in continental <scp>E</scp> ast <scp>A</scp> sia. Applied Vegetation Science, 2015, 18, 3-4.	0.9	4
34	Regionalizing Indicator Values for Soil Reaction in the Bavarian Alps – from Averages to Multivariate Spectra. Folia Geobotanica, 2014, 49, 385-405.	0.4	8
35	Regionalizing Nutrient Values of Vegetation to Assess Site Fertility of Mountain Forests in the Bavarian Alps. Folia Geobotanica, 2014, 49, 407-423.	0.4	8
36	The TRM Model of Potential Natural Vegetation in Mountain Forests. Folia Geobotanica, 2014, 49, 337-359.	0.4	14

#	Article	lF	Citations
37	Environmental, Spatial and Structural Components in the Composition of Mountain Forest in the Bavarian Alps. Folia Geobotanica, 2014, 49, 361-384.	0.4	13
38	Spatial Modeling of Vegetation Potential: An Introduction. Folia Geobotanica, 2014, 49, 309-312.	0.4	2
39	Predictive modelling and monitoring of <scp>E</scp> llenberg moisture value validates restoration success in floodplain forests. Applied Vegetation Science, 2014, 17, 543-555.	0.9	7
40	Predicting <scp>E</scp> llenberg's soil moisture indicator value in the <scp>B</scp> avarian <scp>A</scp> lps using additive georegression. Applied Vegetation Science, 2013, 16, 110-121.	0.9	14
41	Customary selective harvesting has considerably decreased organic carbon and nitrogen stocks in forest soils of the Bavarian Limestone Alps. Forest Ecology and Management, 2013, 305, 167-176.	1.4	23
42	Resourceâ€based determinants of range sizes of forest vascular plants in <scp>G</scp> ermany. Global Ecology and Biogeography, 2013, 22, 1019-1028.	2.7	12
43	Differences between recent and historical records of upper species limits in the northern European Alps. Erdkunde, 2013, 67, 345-354.	0.4	1
44	Towards a more transparent use of the potential natural vegetation concept – an answer to Chiarucci etÂal Journal of Vegetation Science, 2012, 23, 590-595.	1.1	45
45	Facilitating access to vegetation data – Introduction to the Special Volume. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 9-13.	0.2	4
46	Vegetation databases provide a close-up on altitudinal tree species distribution in the Bavarian Alps. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 41-48.	0.2	9
47	News from the Global Index of Vegetation-Plot Databases (GIVD): the metadata platform, available data, and their properties. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 77-82.	0.2	10
48	BERGWALD – the vegetation database of mountain forests in the Bavarian Alps. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 161-165.	0.2	7
49	WINALPecobase – ecological database of mountain forests in the Bavarian Alps. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 167-171.	0.2	10
50	VegetWeb $\hat{a}\in$ " the national online-repository of vegetation plots from Germany. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 173-175.	0.2	5
51	The Global Index of Vegetationâ€Plot Databases (GIVD): a new resource for vegetation science. Journal of Vegetation Science, 2011, 22, 582-597.	1.1	251
52	Modelling effective thermal climate for mountain forests in the Bavarian Alps: Which is the best model?. Journal of Vegetation Science, 2011, 22, 677-687.	1.1	24
53	Hypothesisâ \in driven species distribution models for tree species in the Bavarian Alps. Journal of Vegetation Science, 2011, 22, 635-646.	1.1	56
54	Ecoinformatics and global change – an overdue liaison. Journal of Vegetation Science, 2011, 22, 577-581.	1.1	10

#	Article	IF	CITATIONS
55	Ecological preferences of alien plant species in North-Eastern Germany. Biological Invasions, 2011, 13, 2691-2701.	1.2	32
56	Epigeic bryophytes do not improve bioindication by Ellenberg values in mountain forests. Basic and Applied Ecology, 2009, 10, 420-426.	1.2	23
57	The calcareous riddle: Why are there so many calciphilous species in the Central European flora?. Folia Geobotanica, 2003, 38, 357-366.	0.4	197
58	The sensitivity of Ellenberg indicator values to the completeness of vegetation relev \tilde{A} \otimes s. Basic and Applied Ecology, 2003, 4, 507-513.	1.2	66
59	Landscape patterns of indicator plants for soil acidity in the Bavarian Alps. Journal of Biogeography, 2003, 30, 1493-1503.	1.4	24
60	A critique for phytosociology. Journal of Vegetation Science, 2003, 14, 291-296.	1.1	86
61	Do admixed broadleaves improve foliar nutrient status of conifer tree crops?. Forest Ecology and Management, 2003, 172, 327-338.	1.4	23
62	Other bookreviews. Folia Geobotanica, 2002, 37, 354-360.	0.4	0
63	A probabilistic approach to estimating species pools from large compositional matrices. Journal of Vegetation Science, 2002, 13, 191-198.	1.1	58
64	The influence of coniferous canopies on understorey vegetation and soils in mountain forests of the northern Calcareous Alps. Applied Vegetation Science, 2000, 3, 123-134.	0.9	53
65	Ist Phosphormangel fýr die geringe Vitalitävon Buchen (Fagus sylvatica L.) in den Bayerischen Alpen verantwortlich?. European Journal of Forest Research, 2000, 119, 276-296.	0.3	23
66	The Partial Influence of Norway Spruce Stands on Understorey Vegetation in Montane Forests of the Bavarian Alps. Mountain Research and Development, 2000, 20, 364-371.	0.4	16
67	Relationships between floristic and micro site variability in coniferous forests of the Bavarian Alps. Phytocoenologia, 1999, 29, 327-344.	1.2	13