Klaus von Haeften

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3716524/publications.pdf

Version: 2024-02-01

64 papers 1,348 citations

430874 18 h-index 36 g-index

64 all docs

64
docs citations

times ranked

64

1011 citing authors

#	Article	IF	CITATIONS
1	An intense source for cold cluster ions of a specific composition. Review of Scientific Instruments, 2020, 91, 033315.	1.3	38
2	Silver nanoparticles by atomic vapour deposition on an alcohol micro-jet. Nanoscale Advances, 2019, 1, $4041-4051$.	4.6	7
3	AFM induced self-assembling and self-healing mechanism of silicon oxide nanoparticle linear array domains templated on MoirA© superlattice patterns on HOPG. Surface Science, 2019, 679, 230-239.	1.9	2
4	Atomic fluorescence emitted from a corona discharge in helium above and below saturated vapour pressure. European Physical Journal D, 2018, 72, 1.	1.3	3
5	A thermodynamic model to predict electron mobility in superfluid helium. Physical Chemistry Chemical Physics, 2017, 19, 15821-15832.	2.8	8
6	Nonmonotonic distribution of population of the a $3\hat{l}_{\Sigma}$ u + triplet state rotational levels in corona discharge in cryogenic helium gas. High Temperature, 2017, 55, 326-333.	1.0	2
7	Advanced spectral diagnostics to study electrical discharges in dense fluids. , 2017, , .		0
8	Excimers in the Lowest Rotational Quantum State in Liquid Helium. Journal of Physical Chemistry Letters, 2016, 7, 4666-4670.	4.6	8
9	Theoretical modeling of electron mobility in superfluid 4He. Journal of Chemical Physics, 2016, 145, 044105.	3.0	10
10	Nanoscale stripe arrays templated on Moiré patterns in graphite. Surface Science, 2016, 646, 108-113.	1.9	7
10	Nanoscale stripe arrays templated on Moiré patterns in graphite. Surface Science, 2016, 646, 108-113. Modelling the mobility of positive ion clusters in normal liquid helium over large pressure ranges. Physical Chemistry Chemical Physics, 2015, 17, 18535-18540.	2.8	7
	Modelling the mobility of positive ion clusters in normal liquid helium over large pressure ranges.		
11	Modelling the mobility of positive ion clusters in normal liquid helium over large pressure ranges. Physical Chemistry Chemical Physics, 2015, 17, 18535-18540. Formation of Positively Charged Liquid Helium Clusters in Supercritical Helium and their	2.8	14
11 12	Modelling the mobility of positive ion clusters in normal liquid helium over large pressure ranges. Physical Chemistry Chemical Physics, 2015, 17, 18535-18540. Formation of Positively Charged Liquid Helium Clusters in Supercritical Helium and their Solidification upon Compression. Journal of Physical Chemistry Letters, 2015, 6, 3036-3040. Formation of coherent rotational wavepackets in small molecule-helium clusters using impulsive	2.8	14
11 12 13	Modelling the mobility of positive ion clusters in normal liquid helium over large pressure ranges. Physical Chemistry Chemical Physics, 2015, 17, 18535-18540. Formation of Positively Charged Liquid Helium Clusters in Supercritical Helium and their Solidification upon Compression. Journal of Physical Chemistry Letters, 2015, 6, 3036-3040. Formation of coherent rotational wavepackets in small molecule-helium clusters using impulsive alignment. Faraday Discussions, 2014, 171, 195-218. Probing the Structure and Dynamics of Molecular Clusters Using Rotational Wave Packets. Physical	2.8 4.6 3.2	14 10 11
11 12 13	Modelling the mobility of positive ion clusters in normal liquid helium over large pressure ranges. Physical Chemistry Chemical Physics, 2015, 17, 18535-18540. Formation of Positively Charged Liquid Helium Clusters in Supercritical Helium and their Solidification upon Compression. Journal of Physical Chemistry Letters, 2015, 6, 3036-3040. Formation of coherent rotational wavepackets in small molecule-helium clusters using impulsive alignment. Faraday Discussions, 2014, 171, 195-218. Probing the Structure and Dynamics of Molecular Clusters Using Rotational Wave Packets. Physical Review Letters, 2014, 113, 043004. Molecular and atomic spectra emitted by normal liquid and supercritical ⁴ He excited by	2.8 4.6 3.2	14 10 11 19
11 12 13 14	Modelling the mobility of positive ion clusters in normal liquid helium over large pressure ranges. Physical Chemistry Chemical Physics, 2015, 17, 18535-18540. Formation of Positively Charged Liquid Helium Clusters in Supercritical Helium and their Solidification upon Compression. Journal of Physical Chemistry Letters, 2015, 6, 3036-3040. Formation of coherent rotational wavepackets in small molecule-helium clusters using impulsive alignment. Faraday Discussions, 2014, 171, 195-218. Probing the Structure and Dynamics of Molecular Clusters Using Rotational Wave Packets. Physical Review Letters, 2014, 113, 043004. Molecular and atomic spectra emitted by normal liquid and supercritical ⁴ He excited by corona discharge., 2014, Chemical reaction dynamics I and electron dynamics in molecules: general discussion. Faraday	2.8 4.6 3.2 7.8	14 10 11 19 0

#	Article	IF	Citations
19	Excited atoms in cavities of liquid He I: long-range interatomic repulsion and broadening of atomic lines. EPJ Applied Physics, 2013, 61, 24302.	0.7	1
20	Line broadening of excimers bound to the surface of 4He clusters investigated by comparison with corona discharge excitation spectra. European Physical Journal D, 2013, 67, 1.	1.3	4
21	Production of Fe clusters by collisions of metal vapour with supersonic argon beams. European Physical Journal D, 2013, 67, 1.	1.3	1
22	Generation of the simplest rotational wave packet in a diatomic molecule: Tracing a two-level superposition in the time domain. Physical Review A, 2012, 85, .	2.5	9
23	Shape of atomic lines emitted by cryoplasma in Helium. Journal of Physics: Conference Series, 2012, 397, 012066.	0.4	1
24	Measurement of cluster–cluster interaction in liquids by deposition and AFM of silicon clusters onto HOPG surfaces. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	5
25	Towards biosensing via fluorescent surface sites of nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	4
26	Size and Isotope Effects of Helium Clusters and Droplets: Identification of Surface and Bulk-Volume Excitations. Journal of Physical Chemistry A, 2011, 115, 7316-7326.	2.5	31
27	Electron mobility in liquid and supercritical helium measured using corona discharges: a new semi-empirical model for cavity formation. Physical Chemistry Chemical Physics, 2011, 13, 719-724.	2.8	22
28	Spectra emitted by helium excited by corona discharge., 2011,,.		0
29	A Macroscopic Approach to Determine Electron Mobilities in Low-Density Helium. Journal of Low Temperature Physics, 2011, 162, 702-709.	1.4	15
30	Size-selecting effect of water on fluorescent silicon clusters. Nanotechnology, 2011, 22, 315711.	2.6	12
31	Atomic and molecular spectra of normal liquid4He excited by corona discharges. Low Temperature Physics, 2011, 37, 378-383.	0.6	1
32	A new model for the density-dependence of positive ion mobility in liquid helium. , 2011, , .		1
33	Fluorescence of silicon nanoparticles suspended in water: reactive co-deposition for the control of surface properties of clusters. , 2010 , , .		3
34	A novel approach towards the production of luminescent silicon nanoparticles: sputtering, gas aggregation and co-deposition with H2O. European Physical Journal D, 2009, 52, 11-14.	1.3	19
35	Luminescence from Liquid Helium Excited by Corona Discharges. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16, 742-750.	2.9	14
36	<i>In situ</i> passivation and blue luminescence of silicon clusters using a cluster beam/H2O codeposition production method. Applied Physics Letters, 2009, 94, .	3.3	45

3

#	Article	IF	CITATIONS
37	Spectroscopic investigation of liquid helium excited by a corona discharge: evidence for bubbles and "red satellites― EPJ Applied Physics, 2009, 47, 22821.	0.7	20
38	Structure and magnetic properties of Fe/Fe oxide clusters. Journal of Nanoparticle Research, 2008, 10, 193-199.	1.9	21
39	Novel gas-stabilized iron clusters: synthesis, structure and magnetic behaviour. Nanotechnology, 2008, 19, 505602.	2.6	10
40	Lineshape of rotational spectrum of CO in He4 droplets. Journal of Chemical Physics, 2008, 128, 094303.	3.0	12
41	Photochemical processes in doped argon-neon core-shell clusters: The effect of cage size on the dissociation of molecular oxygen. Journal of Chemical Physics, 2008, 128, 014502.	3.0	12
42	Probing collective excitations in helium nanodroplets: Observation of phonon wings in the infrared spectrum of methane. Journal of Chemical Physics, 2007, 126, 124318.	3.0	14
43	A quantum chemical approach towards the electronically excited states of helium clusters. European Physical Journal D, 2007, 43, 121-124.	1.3	12
44	Electronic and geometric structure of doped rare-gas clusters: surface, site and size effects studied with luminescence spectroscopy. European Physical Journal D, 2006, 38, 323-336.	1.3	30
45	Probing phonon-rotation coupling in helium nanodroplets: Infrared spectroscopy of CO and its isotopomers. Physical Review B, 2006, 73, .	3.2	72
46	High-Resolution Spectroscopy of NO in Helium Droplets: A Prototype for Open Shell Molecular Interactions in a Quantum Solvent. Physical Review Letters, 2005, 95, 215301.	7.8	37
47	The electronically excited states of helium clusters: an unusual example for the presence of Rydberg states in condensed matter. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, S373-S386.	1.5	48
48	Energy relaxation and quenching processes of doped rare-gas clusters with a shell-like geometric structure. Journal of Chemical Physics, 2003, 118, 3043-3051.	3.0	13
49	Bubble Formation and Decay inH3eandH4eClusters. Physical Review Letters, 2002, 88, 233401.	7.8	52
50	Evolution of the charge localization process in xenon cluster ions: From tetramer to dimer cores as a function of cluster size. Journal of Chemical Physics, 2002, 116, 7558-7563.	3.0	15
51	Character of tightly bound excitons in small argon clusters: Insights from size-dependent energy shifts. Physical Review B, 2002, 66, .	3.2	15
52	ELECTRONIC ENERGY DISSIPATION PROCESSES IN DOPED RARE GAS CLUSTERS WITH A SHELL-LIKE STRUCTURE. Surface Review and Letters, 2002, 09, 111-116.	1.1	10
53	Multiple ionization of atom clusters by intense soft X-rays from a free-electron laser. Nature, 2002, 420, 482-485.	27.8	433
54	Observation of Atomiclike Electronic Excitations in PureH3eandH4eClusters Studied by Fluorescence Excitation Spectroscopy. Physical Review Letters, 2001, 87, 153403.	7.8	32

#	Article	IF	Citations
55	Dissociation and suppressed ionization of H[sub 2]O molecules embedded in He clusters: The role of the cluster as a cage. Journal of Chemical Physics, 2001, 115, 10248.	3.0	15
56	A time resolved VUV fluorescence study of hydrogen clusters: evidence of a liquid phase. Journal of Electron Spectroscopy and Related Phenomena, 2000, 106, 199-206.	1.7	18
57	Electronic structure and excited state dynamics of clusters: What can we learn from experiments with synchrotron radiation?. Journal of Electron Spectroscopy and Related Phenomena, 1999, 101-103, 185-191.	1.7	6
58	Photochemistry with fast sample renewal using cluster beams: formation of rare-gas halides in charge-transfer reactions in NF3-doped rare-gas clusters. Chemical Physics Letters, 1999, 305, 327-333.	2.6	11
59	Photochemistry in rare gas clusters. European Physical Journal D, 1999, 9, 5-9.	1.3	15
60	Photochemistry in rare gas clusters. , 1999, , 5-9.		0
61	Discrete Visible Luminescence of Helium Atoms and Molecules Desorbing from Helium Clusters: The Role of Electronic, Vibrational, and Rotational Energy Transfer. Physical Review Letters, 1997, 78, 4371-4374.	7.8	76
62	Fluorescence excitation spectroscopy of Xenon doped Neon clusters: size and site effects, and cluster melting. Zeitschrift FÃ $\frac{1}{4}$ r Physik D-Atoms Molecules and Clusters, 1997, 40, 22-24.	1.0	20
63	Fluorescence excitation spectroscopy of Xenon doped Neon clusters: size and site effects, and cluster melting., 1997,, 22-24.		1
64	Hundert Jahre drahtlose Telegrafie. Physik Journal, 1995, 51, 1183-1183.	0.1	0