Wendy A Offen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3716351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO Journal, 2006, 25, 1396-1405.	3.5	389
2	Characterization and engineering of the bifunctional <i>N</i> - and <i>O</i> -glucosyltransferase involved in xenobiotic metabolism in plants. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20238-20243.	3.3	267
3	Structural and biochemical evidence for a boat-like transition state in β-mannosidases. Nature Chemical Biology, 2008, 4, 306-312.	3.9	104
4	Functional and informatics analysis enables glycosyltransferase activity prediction. Nature Chemical Biology, 2018, 14, 1109-1117.	3.9	81
5	Discovery of a Fungal Copper Radical Oxidase with High Catalytic Efficiency toward 5-Hydroxymethylfurfural and Benzyl Alcohols for Bioprocessing. ACS Catalysis, 2020, 10, 3042-3058.	5.5	46
6	1,6-Cyclophellitol Cyclosulfates: A New Class of Irreversible Glycosidase Inhibitor. ACS Central Science, 2017, 3, 784-793.	5.3	43
7	Three-dimensional structures of two heavily N-glycosylated <i>Aspergillus</i> sp. family GH3 β- <scp>D</scp> -glucosidases. Acta Crystallographica Section D: Structural Biology, 2016, 72, 254-265.	1.1	38
8	Towards broad spectrum activity-based glycosidase probes: synthesis and evaluation of deoxygenated cyclophellitol aziridines. Chemical Communications, 2017, 53, 12528-12531.	2.2	27
9	Carba-cyclophellitols Are Neutral Retaining-Glucosidase Inhibitors. Journal of the American Chemical Society, 2017, 139, 6534-6537.	6.6	24
10	In vitro and in vivo characterization of three Cellvibrio japonicus glycoside hydrolase family 5 members reveals potent xyloglucan backbone-cleaving functions. Biotechnology for Biofuels, 2018, 11, 45.	6.2	24
11	Structure of <i>Papaver somniferum O</i> -Methyltransferase 1 Reveals Initiation of Noscapine Biosynthesis with Implications for Plant Natural Product Methylation. ACS Catalysis, 2019, 9, 3840-3848.	5.5	23
12	Structure of the Michaelis complex of β-mannosidase, Man2A, provides insight into the conformational itinerary of mannoside hydrolysis. Chemical Communications, 2009, , 2484.	2.2	20
13	Three-dimensional structure of a variant `Termamyl-like' <i>Geobacillus stearothermophilus</i> ĺ±-amylase at 1.9â€Ã resolution. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 66-70.	0.4	19
14	Gluco-1 <i>H</i> -imidazole: A New Class of Azole-Type β-Glucosidase Inhibitor. Journal of the American Chemical Society, 2018, 140, 5045-5048.	6.6	17
15	Profiling Substrate Promiscuity of Wild-Type Sugar Kinases for Multi-fluorinated Monosaccharides. Cell Chemical Biology, 2020, 27, 1199-1206.e5.	2.5	15
16	Structural enzymology of <i>Helicobacter pylori</i> methylthioadenosine nucleosidase in the futalosine pathway. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 177-185.	2.5	13
17	Synthesis and application of a highly branched, mechanism-based 2-deoxy-2-fluoro-oligosaccharide inhibitor of <i>endo</i> -xyloglucanases. Organic and Biomolecular Chemistry, 2018, 16, 8732-8741.	1.5	10
18	Design, Synthesis and Structural Analysis of Glucocerebrosidase Imaging Agents. Chemistry - A European Journal, 2021, 27, 16377-16388.	1.7	7

#	Article	IF	CITATIONS
19	Mechanistic Insights into the Chaperoning of Human Lysosomal-Galactosidase Activity: Highly Functionalized Aminocyclopentanes and C-5a-Substituted Derivatives of 4-epi-Isofagomine. Molecules, 2020, 25, 4025.	1.7	4
20	Synthesis of broad-specificity activity-based probes for <i>exo</i> -β-mannosidases. Organic and Biomolecular Chemistry, 2022, 20, 877-886.	1.5	4
21	Development of Nonâ€Hydrolysable Oligosaccharide Activityâ€Based Inactivators for Endoglycanases: A Case Study on αâ€1,6 Mannanases. Chemistry - A European Journal, 2021, 27, 9519-9523.	1.7	2