
Chang Young Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3716035/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-resolution electrohydrodynamic jetÂprinting. Nature Materials, 2007, 6, 782-789.	13.3	1,231
2	Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nature Communications, 2017, 8, 14997.	5.8	633
3	Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Science Advances, 2018, 4, eaap9841.	4.7	465
4	Coherence Resonance in a Single-Walled Carbon Nanotube Ion Channel. Science, 2010, 329, 1320-1324.	6.0	241
5	Three-Dimensional, High-Resolution Printing of Carbon Nanotube/Liquid Metal Composites with Mechanical and Electrical Reinforcement. Nano Letters, 2019, 19, 4866-4872.	4.5	127
6	Understanding the Dynamics of Signal Transduction for Adsorption of Gases and Vapors on Carbon Nanotube Sensors. Langmuir, 2005, 21, 5192-5196.	1.6	104
7	In-situ Synthesis of Carbon Nanotube–Graphite Electronic Devices and Their Integrations onto Surfaces of Live Plants and Insects. Nano Letters, 2014, 14, 2647-2654.	4.5	98
8	Graphene-Based Gas Sensors with High Sensitivity and Minimal Sensor-to-Sensor Variation. ACS Applied Nano Materials, 2020, 3, 2257-2265.	2.4	97
9	Covalent Functionalization of Single-Walled Carbon Nanotubes Alters Their Densities Allowing Electronic and Other Types of Separation. Journal of Physical Chemistry C, 2008, 112, 7326-7331.	1.5	91
10	Carbon nanotubes-semiconductor networks for organic electronics: The pickup stick transistor. Applied Physics Letters, 2005, 86, 182102.	1.5	89
11	Charge Transfer from Metallic Single-Walled Carbon Nanotube Sensor Arrays. Journal of Physical Chemistry B, 2006, 110, 11055-11061.	1.2	86
12	Evidence for High-Efficiency Exciton Dissociation at Polymer/Single-Walled Carbon Nanotube Interfaces in Planar Nano-heterojunction Photovoltaics. ACS Nano, 2010, 4, 6251-6259.	7.3	82
13	Onâ€Chip Micro Gas Chromatograph Enabled by a Noncovalently Functionalized Singleâ€Walled Carbon Nanotube Sensor Array. Angewandte Chemie - International Edition, 2008, 47, 5018-5021.	7.2	75
14	Exciton antennas and concentrators from core–shell and corrugated carbon nanotube filaments of homogeneous composition. Nature Materials, 2010, 9, 833-839.	13.3	75
15	Smart contact lens and transparent heat patch for remote monitoring and therapy of chronic ocular surface inflammation using mobiles. Science Advances, 2021, 7, .	4.7	71
16	An Annulative Synthetic Strategy for Building Triphenylene Frameworks by Multiple Câ^'H Bond Activations. Angewandte Chemie - International Edition, 2017, 56, 5007-5011.	7.2	61
17	Nanometer Positioning, Parallel Alignment, and Placement of Single Anisotropic Nanoparticles Using Hydrodynamic Forces in Cylindrical Droplets. Nano Letters, 2007, 7, 2693-2700.	4.5	60
18	Single-Molecule Recognition of Biomolecular Interaction <i>via</i> Kelvin Probe Force Microscopy. ACS Nano, 2011, 5, 6981-6990.	7.3	59

CHANG YOUNG LEE

#	Article	IF	CITATIONS
19	Amine Basicity (pKb) Controls the Analyte Binding Energy on Single Walled Carbon Nanotube Electronic Sensor Arrays. Journal of the American Chemical Society, 2008, 130, 1766-1773.	6.6	57
20	Label-free quantitation of peptide release from neurons in a microfluidic device with mass spectrometry imaging. Lab on A Chip, 2012, 12, 2037.	3.1	55
21	Direct diversification of unmasked quinazolin-4(3H)-ones through orthogonal reactivity modulation. Chemical Communications, 2017, 53, 10394-10397.	2.2	51
22	Dynamics of Simultaneous, Single Ion Transport through Two Single-Walled Carbon Nanotubes: Observation of a Three-State System. Journal of the American Chemical Society, 2011, 133, 203-205.	6.6	43
23	Superhydrophobic and Self-Sterilizing Surgical Masks Spray-Coated with Carbon Nanotubes. ACS Applied Nano Materials, 2021, 4, 8491-8499.	2.4	40
24	Connecting Single Molecule Electrical Measurements to Ensemble Spectroscopic Properties for Quantification of Single-Walled Carbon Nanotube Separation. Journal of the American Chemical Society, 2009, 131, 3128-3129.	6.6	37
25	Aptamer-functionalized nano-pattern based on carbon nanotube for sensitive, selective protein detection. Journal of Materials Chemistry, 2012, 22, 23348.	6.7	36
26	Pentacene-carbon nanotubes: Semiconducting assemblies for thin-film transistor applications. Applied Physics Letters, 2005, 87, 203510.	1.5	35
27	Microfluidic Device for the Selective Chemical Stimulation of Neurons and Characterization of Peptide Release with Mass Spectrometry. Analytical Chemistry, 2012, 84, 9446-9452.	3.2	35
28	Self-assembled amyloid fibrils with controllable conformational heterogeneity. Scientific Reports, 2015, 5, 16220.	1.6	32
29	Graphene chemiresistors modified with functionalized triphenylene for highly sensitive and selective detection of dimethyl methylphosphonate. RSC Advances, 2019, 9, 33976-33980.	1.7	29
30	Carbon Nanotubes as Molecular Conduits: Advances and Challenges for Transport through Isolated Sub-2 nm Pores. Journal of Physical Chemistry Letters, 2011, 2, 2892-2896.	2.1	19
31	High Mobility, Air-Stable Organic Transistors from Hexabenzocoronene/Carbon Nanotube Bilayers. Journal of Physical Chemistry C, 2007, 111, 17947-17951.	1.5	17
32	The Chemistry of Single-Walled Nanotubes. MRS Bulletin, 2009, 34, 950-961.	1.7	16
33	Near-Infrared Fluorescence Modulation of Refolded DNA Aptamer-Functionalized Single-Walled Carbon Nanotubes for Optical Sensing. ACS Applied Nano Materials, 2018, 1, 5327-5336.	2.4	16
34	Laminar stream of detergents for subcellular neurite damage in a microfluidic device: a simple tool for the study of neuroregeneration. Journal of Neural Engineering, 2013, 10, 036020.	1.8	15
35	A neuron-in-capillary platform for facile collection and mass spectrometric characterization of a secreted neuropeptide. Scientific Reports, 2016, 6, 26940.	1.6	15
36	Carbon Nanotube-Patterned Surface-Based Recognition of Carcinoembryonic Antigens in Tumor Cells for Cancer Diagnosis. Journal of Physical Chemistry Letters, 2013, 4, 1126-1130.	2.1	14

CHANG YOUNG LEE

#	Article	IF	CITATIONS
37	An Annulative Synthetic Strategy for Building Triphenylene Frameworks by Multiple Câ^'H Bond Activations. Angewandte Chemie, 2017, 129, 5089-5093.	1.6	14
38	Stimulation and release from neurons via a dual capillary collection device interfaced to mass spectrometry. Analyst, The, 2013, 138, 6337.	1.7	12
39	Effect of semiconductor polymer backbone structures and side-chain parameters on the facile separation of semiconducting single-walled carbon nanotubes from as-synthesized mixtures. Applied Surface Science, 2018, 429, 264-271.	3.1	11
40	Plasma functionalization of powdery nanomaterials using porous filter electrode and sample circulation. Applied Surface Science, 2018, 443, 628-634.	3.1	10
41	A Low-Energy Electron Beam Does Not Damage Single-Walled Carbon Nanotubes and Graphene. Journal of Physical Chemistry Letters, 2016, 7, 4739-4743.	2.1	9
42	Concomitant desalting and concentration of neuropeptides on a donut-shaped surface pattern for MALDI mass spectrometry. Chemical Communications, 2018, 54, 5688-5691.	2.2	7
43	Compartmentalized Arrays of Matrix Droplets for Quantitative Mass Spectrometry Imaging of Adsorbed Peptides. Analytical Chemistry, 2020, 92, 8715-8721.	3.2	7
44	The Exterior of Single-Walled Carbon Nanotubes as a Millimeter-Long Cation-Preferring Nanochannel. Chemistry of Materials, 2018, 30, 5184-5193.	3.2	6
45	The pick-up stick transistor. Solid State Communications, 2005, 135, 638-644.	0.9	5
46	Matter-Wave Diffraction from a Periodic Array of Half Planes. Physical Review Letters, 2019, 122, 040401.	2.9	5
47	Highâ€Yield Fabrication, Activation, and Characterization of Carbon Nanotube Ion Channels by Repeated Voltageâ€Ramping of Membraneâ€Capillary Assembly. Advanced Functional Materials, 2019, 29, 1900421.	7.8	5
48	Optimal Synthesis of Horizontally Aligned Single-Walled Carbon Nanotubes and Their Biofunctionalization for Biosensing Applications. Journal of Nanomaterials, 2016, 2016, 1-8.	1.5	4
49	Alkalide-Assisted Direct Electron Injection for the Noninvasive n-Type Doping of Graphene. ACS Applied Materials & Interfaces, 2021, 13, 1270-1276.	4.0	4
50	Experimental measurements in single-nanotube fluidic channels. MRS Bulletin, 2017, 42, 300-305.	1.7	3
51	Packaging vertically aligned carbon nanotubes into a heat-shrink tubing for efficient removal of phenolic pollutants. RSC Advances, 2019, 9, 22205-22210.	1.7	3
52	Hygroscopic Micro/Nanolenses along Carbon Nanotube Ion Channels. Nano Letters, 2020, 20, 812-819.	4.5	3
53	Aqueous Microlenses for Localized Collection and Enhanced Raman Spectroscopy of Gaseous Molecules. Advanced Optical Materials, 2021, 9, 2101209.	3.6	3
54	Dual determination of nitrite and iron by a single greener sequential injection spectrophotometric system employing a simple single aqueous extract from <i>Areca catechu</i> Linn. serving as a natural reagent. RSC Advances, 2022, 12, 20110-20121.	1.7	3

4

CHANG YOUNG LEE

#	Article	IF	CITATIONS
55	Probing sub-diffraction optical confinement via the polarized Raman spectroscopy of a single-walled carbon nanotube. Nanoscale, 2018, 10, 1030-1037.	2.8	2
56	Design and Integration of a Gas Sensor Module that Indicates the End of Service Life of a Gas Mask Canister. Advanced Materials Technologies, 0, , 2100711.	3.0	2
57	Experimental test of Babinet's principle in matter-wave diffraction. Physical Chemistry Chemical Physics, 2021, 23, 8030-8036.	1.3	Ο
58	Extraction and Upconcentration of Adsorbates from Precisely Defined Area for Quantitative MALDI Mass Spectrometry Imaging. Methods in Molecular Biology, 2022, 2437, 159-169.	0.4	0