Kaiping Tai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3715226/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-situ imaging techniques for advanced battery development. Materials Today, 2022, 57, 279-294.	14.2	16
2	Ultrahigh thermal stability of carbon encapsulated Cu nanograin on a carbon nanotube scaffold. Carbon, 2021, 172, 712-719.	10.3	7
3	Interface regulation enables hysteresis free wide-bandgap perovskite solar cells with low VOC deficit and high stability. Nano Energy, 2021, 90, 106537.	16.0	12
4	Decoupling phonon and carrier scattering at carbon nanotube/Bi2Te3 interfaces for improved thermoelectric performance. Carbon, 2020, 170, 191-198.	10.3	33
5	A Flexible and Infrared-Transparent Bi ₂ Te ₃ -Carbon Nanotube Thermoelectric Hybrid for both Active and Passive Cooling. ACS Applied Electronic Materials, 2020, 2, 3008-3016.	4.3	15
6	Potassiumâ€Induced Phase Stability Enables Stable and Efficient Wideâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000098.	5.8	37
7	A flexible thermoelectric device based on a Bi2Te3-carbon nanotube hybrid. Journal of Materials Science and Technology, 2020, 58, 80-85.	10.7	31
8	In Situ Passivation on Rear Perovskite Interface for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 7690-7700.	8.0	12
9	Quantitative investigation on sink strength of nano-grain boundary for irradiation resistance. Journal of Nuclear Materials, 2019, 526, 151741.	2.7	17
10	Tailoring Nanoporous Structures in Bi ₂ Te ₃ Thin Films for Improved Thermoelectric Performance. ACS Applied Materials & Interfaces, 2019, 11, 38075-38083.	8.0	41
11	Fabrication of efficient formamidinium perovskite solar cells under ambient air via intermediate-modulated crystallization. Solar Energy, 2019, 187, 147-155.	6.1	34
12	Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nature Materials, 2019, 18, 62-68.	27.5	316
13	Cellulose Fiber-Based Hierarchical Porous Bismuth Telluride for High-Performance Flexible and Tailorable Thermoelectrics. ACS Applied Materials & Interfaces, 2018, 10, 1743-1751.	8.0	85
14	Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance. Nanoscale, 2017, 9, 8213-8219.	5.6	17
15	The Oxygen Reduction Reaction Rate of Metallic Nanoparticles during Catalyzed Oxidation. Scientific Reports, 2017, 7, 7017.	3.3	7
16	Experimental study on atomic-scale strengthening mechanism of the â£B transition-metal nitrides. Journal of Alloys and Compounds, 2017, 696, 572-579.	5.5	3
17	Defect-induced strain relaxation in 3C-SiC films grown on a (100) Si substrate at low temperature in one step. CrystEngComm, 2016, 18, 6817-6823.	2.6	7
18	The importance of grain boundary complexions in affecting physical properties of polycrystals. Current Opinion in Solid State and Materials Science, 2016, 20, 324-335.	11.5	57

Kaiping Tai

#	Article	IF	CITATIONS
19	Dark-blue mirror-like perovskite dense films for efficient organic–inorganic hybrid solar cells. Journal of Materials Chemistry A, 2016, 4, 3689-3696.	10.3	8
20	Grain Boundary Parting Limit during Dealloying. Advanced Engineering Materials, 2015, 17, 157-161.	3.5	3
21	Orientation relationship formed during irradiation induced precipitation of W in Cu. Journal of Nuclear Materials, 2014, 454, 126-129.	2.7	7
22	<i>In Situ</i> Cryogenic Transmission Electron Microscopy for Characterizing the Evolution of Solidifying Water Ice in Colloidal Systems. Microscopy and Microanalysis, 2014, 20, 330-337.	0.4	37
23	Comparative Study of Li and Na Electrochemical Reactions with Iron Oxide Nanowires. Electrochimica Acta, 2014, 118, 143-149.	5.2	37
24	Catalyzed oxidation for nanowire growth. Nanotechnology, 2014, 25, 145603.	2.6	16
25	Structural evolution of α-Fe2O3 nanowires during lithiation and delithiation. Journal of Power Sources, 2014, 245, 308-314.	7.8	14
26	Growth Kinetics and Morphological Evolution of ZnO Precipitated from Solution. Chemistry of Materials, 2013, 25, 2927-2933.	6.7	70
27	Scaling effects on grain boundary diffusivity; Au in Cu. Acta Materialia, 2013, 61, 1851-1861.	7.9	7
28	Misorientation dependence of Al2O3 grain boundary thermal resistance. Applied Physics Letters, 2013, 102, .	3.3	32
29	Kinetics and thermodynamics associated with Bi adsorption transitions at Cu and Ni grain boundaries. Journal of Applied Physics, 2013, 113, .	2.5	7
30	Grain boundary doping strengthens nanocrystalline copper alloys. Scripta Materialia, 2012, 67, 720-723.	5.2	85
31	Temperature dependence of irradiation-induced creep in dilute nanostructured Cu–W alloys. Journal of Nuclear Materials, 2012, 422, 8-13.	2.7	33
32	Irradiation-induced creep in nanostructured Cu alloys. Scripta Materialia, 2011, 65, 163-166.	5.2	22